77

[image: image1.png]

Introduction

The purpose of this program is to simulate (not too accurately) the spread of an infection, virus, plague, etc. It can also be considered a game depending on how you view it. The idea of this project came from the zombie vs. humans project as well as from plague based games that I have played. Populations are accurate continent wise, but not country wise. This is because it would have taken too much time to determine the coordinates of every country, while it was not that difficult to separate coordinates by continents. The end result is the infection either wiping out the world or dying off due to infected being eliminated from the cure or by the infection itself. The initial prompt pre-sets are mostly for testing and giving the user an idea of how the different prompts effect the outcome. Best representation of an actual infection would come from user inputted variables, not the presets. However, several of the presets do a good job of showing what the program can do. The displays are the main map, a population line graph, and a population percentage pie chart. Most of the methods, tools and functions used in this program will also work with other population matricides (such as matricides that have accurate world or area population densities) with only slight modifications needed. All specific coordinates such as those used for continents and air ports were found using the CoordFinderTool. Starting the animation requires user to hit play button. Results of simulation will never be the same since rand is used in multiple locations, however the same settings will produce relatively similar results each time with a flew random results as well.

Project Analysis

This first step I took towards completing this project was taking the globe that I had programmed for the third extra credit and changing it into a flat map so that the entire world could be viewed and the spread could be easily observed. This coordinates for the original globe had been imported into Matlab from an excel spread sheet that I had typed out by hand. For the project, I doubled the size of the matrix to 50 by 100 so that there would be more cells. Later I changed the dimensions to 51 by 101 so that all of the land would be shown in the graph. After creating and importing this matrix, (by selecting it all in excel and then copying and pasting it into my code making slight changes so that it would be accepted as a matrix) I then graphed it with surf and set to a 2D view with the view function. The problem of the globe graphing upside down was initially solved with the flipud function which flips a matrix in the up/down direction. From this I built the CoordFinderTool so that I could select the coordinates of my continents on the graph with ginput and make functions that could perform necessary tasks for each continent separately such as setting cell values and finding the sums of cell values. Then I created the world function so that I could do these tasks for all of the continents at once. At this point, I could create the matrix for graphing the map using the world function, so I did away with the long matrix in the script. These functions were later extremely useful for things such as finding populations and finding the continent on which a set of coordinates belong. The main color value matrix then became known as my c matrix. This matrix contains the number value associated with the color to be displayed on the map (0-13). These colors are defined in the create colormat section of the code. The next step was to create a population matrix that would have the same dimensions as the c matrix, only it would have 4 layers, each with a different assigned population. This matrix would be called the k matrix. I then researched the world population by continent and determined the population needed for each cell by dividing the population of the continent by the number of cells of the continent. This information was saved in a structure. The healthy layer of the k matrix was then populated using each of my continent functions. Only one country was set separate population wise from the continent it is associated with. Greenland was set separate since it is considered a part of Europe and has a tiny population and a great area. I did not want most of Europe's population in Greenland so I set it separate.

The next big obstacle was the coloring of the map. The first thing I did was to define the colors that would be associated with certain populations, and then save them in a matrix. I incremented my colors indicating infected in steps of 10% so that the color cell color could gradually change from green to red. For colors indicating dead, I used two different colors (gray for 50% dead and black for 100% dead) because I wanted the display to be more focused on infected levels until the cell was mostly dead, then it would focus on the dead levels. I then I built a function called populationcolor which would go through each cell of my k matrix and decide which color the cell would be based off of cells populations. This function then updated the c matrix with the appropriate color values. I then tried graphing the new c matrix but quickly realized that it wasn't colored properly at times when there was a vast gap in color values (such as the c matrix only having 0 1 and 13). The solution to this was building colorfinder which takes in the c matrix and a matrix of all the colors and creates a new matrix with gapless color values (instead of 0 1 13 it would have 0 1 2) and a new colormap matrix with only the colors being used on that particular day. At this point the graph would animate its colors, but needed to calculate populations.

Before I started adding infection, I wanted to have an initial display where the user could decide where to start the infection. This was accomplished using ginput which works perfectly for this since it gives the user crosshairs with which they can pick points. I then added all of the necessary text displays. After this I set about infecting. The main method of infection that was set up is a land spread method which considers the neighbors of every cell and how much they would infect the cell being looked at. This method came about from the suggestions you gave, looking at Conway's Game of Life, and suggestions from Dr. Brown. The only issue with this method is that the infected of a cell need to be a certain percentage before they can spread to another cell. The solution was to randomly add a single infected to the cell until the cell had more than 10 infected. Once the cell had more than 10 infected it was run through an equation that had each infected contact 25 people a day and infect a proportion of .007. These number were suggested by Dr. Brown. The reason that there had to be ten infected is that the equation wont allow the infected to spread unless there are ten. This equation was used until the cell had enough infected to spread to its neighbors, then it was no longer necessary since the land spread method would easily do the rest of the work. The next part was to kill the infected. This was accomplished by making a function that could calculate the number of infected that would die on a day based off of user input, find all of the cells with infected, then randomly pick cells to kill off random amounts in until the days killing requirements had been met. This exact same method was later used in the cure function with only slight modifications. The only issue that arose was that when there was a small amount of infected left, the function would stop killing since the proportion needed to kill would be 0. This was fixed by just changing the proportion to kill in these situations. The proportions chosen were chosen just because they worked well and sped up the end just enough. The infection was set up so that it would start killing after a certain number of days inputted by the user. I decided to do this because it would allow the user to either have the infection mutate deadliness at a certain point, or just always be deadly. I set up the cure so that the disease would be noticed by people at a certain point, then once noticed it would take a certain number of days to developed a cure. This was used since it is similar to what would happen in a real scenario.

At this point I decided to add multiple user interfaces to make the program nicer. This included control buttons, a menu, and a nicer prompt system. The buttons were nice because they allow for manipulation of the animation (the exit button was nice because I didn't need to use control c any more) and a they allowed for a way to call other graphs such as the hidden line and pie graphs which can display useful information. The menu and prompts used were essential because they allowed for more control of what the user entered, while giving the user pre-set options that they could edit to see how small changes would effect the outcome. The presets I created were simply chosen because they had predictable outcomes and could help to show the user how variables effect the infection.

The next task was to give the infection the capability to jump across water. This was done by a system of airports which were strategically placed in areas were major airports would be. These were also found with the CoordFinderTool. Airports with infected would be chosen at random and would then send infected to another random airport. One big issue arose when I wanted to add the airplane spread trajectories to the map to show where the infection jumped to. The problem was that I wanted to be able to have all of the graphs displays changing except for the trajectories which would always stay on the screen. Since hold on applied to all the displays, doing this was difficult at first. My first solution was to save the handle of each part of the display and specifically delete and recreate each one for every pass of the loop. While this did work, it significantly slowed the animation. Since I wanted to later add a cure and have the animation display at a quicker rate, I looked for a way to speed things up. The solution was to set up all the displays before the loop, then use the set function to update them in the loop which is a much faster process. This allowed for all of the features to be present and for the animation to be at a decent speed.

Conclusion

The results of the project are that this program can do a good great job of modeling an infection, however the accuracy depends on the inputs the user uses. If someone wanted to accurately model and infection with this program, they would have to adjust the setting until they got it to have outputs that can come close to matching actual collected data. There could also be some variables that affect spreads of infections that I completely overlooked that make this program not capable of being accurate. To be sure, I would need to do research on actual diseases. The output of the program is never exactly the same, but tends to be similar if the same inputs are used. Because of this the desired output can easily be achieve through trial and error. The pre-sets that I made are all different predictable outcomes (they almost always end in the same way, but occasionally can produce slightly different endings due to origin location and randomness). All possible outcomes such as the infected all being cured, everyone dying, etc. seem to be possible (there could be outcomes I didn't think of), and simply depend on the users inputs. The code rarely has any errors pop up and those that do are because some process was not fully completed due to user actions. Some ways I would have liked to expand the program would have been to use a more accurate population matrix, and to add a third pop up display that has the main display in globe form slowly rotating. These were not attempted because they would taken considerably more time and slowed down the animation an undesired amount.

Appendix

Contents

Coding For:

1. Infection (main script)......pg: 7-27

2. CoordFinderTool.............pg: 28-29

3. Africa...............................pg: 30-31

4. Asia.................................pg: 32-34

5. Australia..........................pg: 35-36

6. Europe.............................pg: 37-40

7. NorthAmerica..................pg: 41-42

8. SouthAmerica..................pg: 43-44

9. World...............................pg: 45-45

10. continentfinder...............pg: 46-47

11. colorfinder......................pg: 48-50

12. populationcolor..............pg: 51-52

13. AirPortSpread................pg: 53-56

14. cell2cellspread...............pg: 57-61

15. cure................................pg: 62-64

16. lethality...........................pg: 65-67

17. centeredmenu................pg: 68-74

(next section bibliography is pg 75-76)
Infection (main script)

% ==

%

%

% INFECT THE WORLD

%

%

% ==
% --

% About

% --
% The purpose of this program is to simulate (not too accurately) the

% spread of an infection, virus, plague, etc. It can also be considered a

% game depending on how you view it. The idea of this project came from

% the zombie vs. humans project as well as from plague based games that I

% have played. Populations are accurate continent wise, but not country

% wise. This is because it would have taken too much time to determine the

% coordinates of every country, while it was not that difficult to separate

% coordinates by continents. The end result is the infection either wiping

% out the world or dying off due to infected being eliminated from the cure

% or by the infection itself. The initial prompt pre-sets are mostly for

% testing and giving the user an idea of how the different prompts effect

% the outcome. Best representation of an actual infection would come from

% user inputted variables, not the presets. However, several of the presets

% do a good job of showing what the program can do. The displays are the

% main map, a population line graph, and a population percentage pie chart.

% Most of the methods, tools and functions used in this program will also

% work with other population matricides (such as matricides that have

% accurate world or area population densities) with only slight

% modifications needed. All specific coordinates such as those used for

% continents and air ports were found using the CoordFinderTool. Starting

% the animation requires user to hit play button. Results of simulation

% will never be the same since rand is used in multiple locations, however

% the same settings will produce relatively similar results each time with

% a flew random results as well.
% --

% --
% --

% fresh start

% --
% clear variables, command prompt, figure, close figures
clear all
clc

clf

close all
% --

% --
% --

% initial prompts

% --
% allow user to choose to input their own data or use pre-determined settings
% use varient of built in menu funtion. only modification to original was

% changing the screen location of the menu so that it would be closer to

% the middle of the screen as apposed to the top left corner which is not a

% desirable location for the main menu of the program to be displayed.

% saves option number to variable for later switch statement
InputType = centeredmenu('Choose Variables Set ',... % Main Menu Display
'Blank Set',... % Option 1
'Previous Set Used',... % Option 2
'Slow Cure, Kills All Human Life Pre-set',... % Option 3
'Slow Cure, Infected Killed Off Pre-set',... % Option 4
'Fast Spread, Slow Kill, Fast Cure Pre-set',... % Option 5
'Fast Spread, Fast Kill, Slow Cure Pre-set'); % Option 6
% --
% name all of the prompts that will be used in a cell array so that they

% can be imported by inputdlg. inputdlg is used instead of traditional

% input because it is a much nicer way to recieve input and is more

% compatable with pre-set data. It can be set up to save the users last

% input. The use last settings option is a very useful tool for a progam

% like this because it alows the user to not have to remember their inputs

% after a lengthy simulation. inputdlg returns a cell array of the users

% inputs which will be converted later
PROMPTNAMES = {...
'Name of the infectious disease:',... % name
'Number of initial infected (1 to 20 people):',... % initalinfected
'Infection land spread speed percentage (% 0 to 100):',... % landspread
'Infection air spread speed percentage (% 0 to 100):',... % AirSpread
'Days until infection becomes deadly:',... % DeadlyDays
'Percent of infected killed daily (% 0 to 100):',... % PercentDailyDeaths
'Percent Population affected before cure research starts (% 0 to 100):',... % PopPercentToResearch
'Number of Days required to develope cure after research begins:',... % CureDays
'Percent of infected cured daily once cure developed (% 0 to 100):',... % PercentDailyCures
'Starting animation speed percentage (% 0 to 100):'}; % startspeed
% use switch to accept users choice from menu
switch InputType
case 1 % Blank Set
PROMPTS = inputdlg(PROMPTNAMES,... % Adds all the prompt names that were set
'Custom Virus',... % Prompts Title
1); % Number of lines per prompt
case 2 % Previous Set Used
% load last used variables from file
load('PROMPTS.mat');
if isempty(PROMPTS) == 1 % if cancel hit previously, black array saved, this makes it so that a blank set is used
PROMPTS = inputdlg(PROMPTNAMES,... % Adds all the prompt names that were set
'No Previous Set',... % Prompts Title
1); % Number of lines per prompt
else % last set used
PROMPTS = inputdlg(PROMPTNAMES,... % Adds all the prompt names that were set
'Previous Set Used',... % Prompts Title
1,... % Number of lines per prompt
PROMPTS); % uses loaded variables
end
% cases 3-6 have preset variables typed out as opposed to added from

% prevous variables. Each variable being considered in the array is labled
case 3 % Slow Cure, Kills All Human Life Pre-set
PROMPTS = inputdlg(PROMPTNAMES,... % Adds all the prompt names that were set
'Slow Cure, Kills All Human Life',... % Prompts Title
1,... % Number of lines per prompt
{'Victorious Virus',... % name
'1',... % initalinfected
'70',... % landspread
'50',... % AirSpread
'300',... % DeadlyDays
'5',... % PercentDailyDeaths
'99',... % PopPercentToResearch
'900',... % CureDays
'.005',... % PercentDailyCures
'100'}); % startspeed
case 4 % Slow Cure, Infected Killed Off Pre-set
PROMPTS = inputdlg(PROMPTNAMES,... % Adds all the prompt names that were set
'Slow Cure, Infected Killed Off',... % Prompts Title
1,... % Number of lines per prompt
{'Defeated Virus',... % name
'1',... % initalinfected
'18.6667',... % landspread
'20',... % AirSpread
'200',... % DeadlyDays
'5',... % PercentDailyDeaths
'99',... % PopPercentToResearch
'900',... % CureDays
'.005',... % PercentDailyCures
'100'}); % startspeed
case 5 % Fast Spread, Slow Kill, Fast Cure Pre-set
PROMPTS = inputdlg(PROMPTNAMES,... % Adds all the prompt names that were set
'Fast Spread, Slow Kill, Fast Cure',... % Prompts Title
1,... % Number of lines per prompt
{'Cured Virus',... % name
'1',... % initalinfected
'100',... % landspread
'20',... % AirSpread
'200',... % DeadlyDays
'5',... % PercentDailyDeaths
'50',... % PopPercentToResearch
'20',... % CureDays
'5',... % PercentDailyCures
'100'}); % startspeed
case 6 % Fast Spread, Fast Kill, Slow Cure Pre-set
PROMPTS = inputdlg(PROMPTNAMES,... % Adds all the prompt names that were set
'Fast Spread, Fast Kill, Slow Cure',... % Prompts Title
1,... % Number of lines per prompt
{'Deadly Virus',... % name
'1',... % initalinfected
'100',... % landspread
'100',... % AirSpread
'1',... % DeadlyDays
'5',... % PercentDailyDeaths
'95',... % PopPercentToResearch
'100',... % CureDays
'10',... % PercentDailyCures
'100'}); % startspeed
end
% save PROMPTS variable so that users last used imputs are saved and can be loaded

% later if user chooses to use last variable used. saved to file name

% PROMPTS in current folder
save('PROMPTS.mat','PROMPTS');
% --
% convert the strings in cell array PROMPTS to variables, ensure that

% condions of variable specified earlier are met. if they arent,change them

% to the closest value that does meet the conditions.

% str2num simply convets any number characters in a string to a number value

% %#ok<*ST2NM> tells editor to ignor the error message given. error ignored

% since str2num work fine for the task.
name = PROMPTS{1,1};
initinfected = floor(str2num(PROMPTS{2,1})); %#ok<*ST2NM>
if initinfected < 1

initinfected = 1;
elseif initinfected > 20

initinfected = 20;
end
landspread = str2num(PROMPTS{3,1});
if landspread < 0

landspread = 0;
elseif landspread > 100

landspread = 100;
end
AirSpread = str2num(PROMPTS{4,1});
if AirSpread < 0

AirSpread = 0;
elseif AirSpread > 100

AirSpread = 100;
end
DeadlyDays = str2num(PROMPTS{5,1});
PercentDailyDeaths = str2num(PROMPTS{6,1});
if PercentDailyDeaths < 0

PercentDailyDeaths = 0;
elseif PercentDailyDeaths > 100

PercentDailyDeaths = 100;
end
PopPercentToResearch = str2num(PROMPTS{7,1});
if PopPercentToResearch < 0

PopPercentToResearch = 0;
elseif PopPercentToResearch > 100

PopPercentToResearch = 100;
end
CureDays = str2num(PROMPTS{8,1});
PercentDailyCures = str2num(PROMPTS{9,1});
if PercentDailyCures < 0

PercentDailyCures = 0;
elseif PercentDailyCures > 100

PercentDailyCures = 100;
end
startspeed = str2num(PROMPTS{10,1});
if startspeed < 0

startspeed = 0;
elseif startspeed > 100

startspeed = 100;
end
% --
% convert user input percents to numbers useable for the desired task
% landspread
landspread = (1/landspread)*100*280;
% AirSpread
AirSpread = (.1*(100-AirSpread)/100)+.9;
% PercentDailyDeaths
PercentDailyDeaths = PercentDailyDeaths/100;
% PercentDailyCures
PercentDailyCures = PercentDailyCures/100;
% startspeed
startspeed = startspeed/100;
% --

% --
% --

% create important matracies

% --
% create c

% c matrix is the color value matrix used for the graph
c = zeros(51,101);

coriginal = World('c',c,1); % put value of 1 in every continent cell to represent land
c = coriginal; % save the original c for display use later
% --
% create k

% k matrix is the populations matrix with population per square on graph
k = zeros(51,101,4);
% Decide which layers will be accociated with which populations
% layer1 % healthy population

% layer2 % infected population

% layer3 % dead population

% layer4 % cured population
% --
% determine population of designated areas

% actual population will be slightly less since floor will be used to avoid

% partial people later on.
% Use world population estamates (greenland sperated from main europe)

% accurate as of 3/28/13

% http://www.nationsonline.org/oneworld/world_population.htm

% World: 7,007,000,000

% North America: 546,000,000

% South America: 396,000,000

% All Europe: 740,000,000

% Main Europe: 739,943,146

% Greenland: 56,854

% Asia: 4,216,000,000

% Africa: 1,072,000,000

% Australia: 37,000,000
% --
% determine size of designated areas
SIZE.World = World('sum',c);

SIZE.NorthAmerica = NorthAmerica('sum',c);

SIZE.SouthAmerica = SouthAmerica('sum',c);

SIZE.EuropeAll = Europe('sum',c);

SIZE.EuropeMain = Europe('summain',c);

SIZE.Green = Europe('sumgreen',c);

SIZE.Asia = Asia('sum',c);

SIZE.Africa = Africa('sum',c);

SIZE.Australia = Australia('sum',c);
% --
% determine healthy population per square on map
sqpop.World = floor(7007000000/SIZE.World);

sqpop.NorthAmerica = floor(546000000/SIZE.NorthAmerica);

sqpop.SouthAmerica = floor(396000000/SIZE.SouthAmerica);

sqpop.EuropeMain = floor(739943146/SIZE.EuropeMain);

sqpop.Green = floor(56854/SIZE.Green);

sqpop.Asia = floor(4216000000/SIZE.Asia);

sqpop.Africa = floor(1072000000/SIZE.Africa);

sqpop.Australia = floor(37000000/SIZE.Australia);
% --
% populate healthy population matrix
k = NorthAmerica('k',k,sqpop.NorthAmerica,1);

k = SouthAmerica('k',k,sqpop.SouthAmerica,1);

k = Europe('specialk',k,sqpop.EuropeMain,1,sqpop.Green);

k = Asia('k',k,sqpop.Asia,1);

k = Africa('k',k,sqpop.Africa,1);

k = Australia('k',k,sqpop.Australia,1);
% save original healthy layer for comparison use later
PopulationSpread = k(:,:,1);
% --

% --
% --

% create colormat

% --
% define important colors in colormat matrix in order of appearance
% WATER % % value: 0
colormat(1,:) = [0 0 1];%blue
% 100% HEALTHY POPULATION, 0% INFECTED % value: 1
colormat(2,:) = [0 1 0]; %green
% 90% HEALTHY POPULATION, 10% INFECTED % value: 2
colormat(3,:) = [.2 .9 0];
% 80% HEALTHY POPULATION, 20% INFECTED % value: 3
colormat(4,:) = [.4 .8 0];
% 70% HEALTHY POPULATION, 30% INFECTED % value: 4
colormat(5,:) = [.6 .7 0];
% 60% HEALTHY POPULATION, 40% INFECTED % value: 5
colormat(6,:) = [.8 .6 0];
% 50% HEALTHY POPULATION, 50% INFECTED % value: 6
colormat(7,:) = [1 .5 0]; %orange
% 40% HEALTHY POPULATION, 60% INFECTED % value: 7
colormat(8,:) = [1 .4 0];
% 30% HEALTHY POPULATION, 70% INFECTED % value: 8
colormat(9,:) = [1 .3 0];
% 20% HEALTHY POPULATION, 80% INFECTED % value: 9
colormat(10,:) = [1 .2 0];
% 10% HEALTHY POPULATION, 90% INFECTED % value: 10
colormat(11,:) = [1 .1 0];
% 0% HEALTHY POPULATION, 100% INFECTED % value: 11
colormat(12,:) = [1 0 0]; %red
% 50% DEAD POPULATION % % value: 12
colormat(13,:) = [.5 .5 .5]; %gray
% 100% DEAD POPULATION % % value: 13
colormat(14,:) = [0 0 0]; %black
% --

% --
% --

% inital display, select origin

% --
% create the figures, save their handle so figure can be specified

% normalized used so that positioning the same on any screen size

% zbuffer used so that ginput works on computers with weaker graphics cards

% G1 is first mini graph, G2 is second mini graph, MAIN is the main

% animated MAP
hfigG1 = ... % save figure handle
figure('Units','normalized',...% set units used for figure, normalized makes lower-left corner of the figure window (0,0) and upper-right corner (1,1) (0% to 100%)
 'ToolBar','figure',...% ensure toolbar is present for 3D rotate since user interfaces remove this toolbar
 'Renderer','zbuffer',...% change rendering method. this method works with ginput better than the default painters
 'Visible','off'); % hide the figure since it is not main display
hfigG2 = ... % save figure handle
figure('Units','normalized',...% set units used for figure, normalized makes lower-left corner of the figure window (0,0) and upper-right corner (1,1) (0% to 100%)
 'ToolBar','figure',...% ensure toolbar is present for 3D rotate since user interfaces remove this toolbar
 'Renderer','zbuffer',...% change rendering method. this method works with ginput better than the default painters
 'Visible','off'); % hide the figure since it is not main display
hfigMAIN = ... % save figure handle
figure('Units','normalized',...% set units used for figure, normalized makes lower-left corner of the figure window (0,0) and upper-right corner (1,1) (0% to 100%)
 'Position',[0 0 1 .92],...% set to bottom left corner of screen at screen size of 92%
 'ToolBar','figure',...% ensure toolbar is present for 3D rotate since user interfaces remove this toolbar
 'Renderer','zbuffer'); % change rendering method. this method works with ginput better than the default painters
% --
% set up the figures set function is used in G1 and G2. set function

% sets the specified properties of the specified handle to the specified

% value
% set up G1 figure
figure(hfigG1) % select the figure
xlabel('Days') % label x axis
ylabel('Population') % label y axis
title(sprintf('Day vs Population\n(Cured also count towards healthy)')) % add graph title
set(hfigG1,'Visible','off') % use set function to make the figure invisible so that it will only be shown the user calls for it
% set up G2 figure
figure(hfigG2) % select the figure
title('Population') % add graph title
set(hfigG2,'Visible','off')% use set function to make the figure invisible so that it will only be shown the user calls for it
% set up MAIN figure
% set colors
[colormapp,COLOR] = colorfinder(c,colormat);
% graph the inital map to find infection origin
figure(hfigMAIN) % set to main figure
surf(c,COLOR); % make surface graph with c as the height values and COLOR as the color scheme
colormap(colormapp) % use set colors
view(0,90) % set view to 0 horiz rotation and 90 vert elevation for a 2-D view
axis equal % make axes proportional so map isnt distorted
axis off % remove all axes markings so only world map is shown
title('Choose The Origin') % set title to user instructions
drawnow % animate so transintion to next map is smooth
% --
% select origin

% round down using floor since integer coords needed and ginput gives exact coords

% which are usually greater than the integer

% use while loop to ensure water is not chosen
originvalue = 0; % 0 value given so while loop will start
while originvalue ~= 1 % since water is 0 in c and land is 1 and we dont want water selected
[origini,originj] = ginput(1); % ginput alows user to select point on graph using crosshairs and returns coordinates as specified variables
origini=floor(origini);

originj=floor(originj);

originvalue = c(originj,origini); % ginput gives cords in column,row so order switched to row,column
end
% determine continent of origin
continent = continentfinder(originj,origini);
% display continent of origin and more user instructions in title
title(sprintf('%s starts in %s\nPress any key or click mouse to continue',name,continent))

waitforbuttonpress % pauses until mouse clicked or key hit, this used instead of pause so that mouse click also advances
% --

% --
% --

% create GUI buttons

% --
% use user interface controls under command uicontrol. this is what is

% used to add graphical user interfaces to figures which is necessary and

% useful in this case
% control buttons
% pause button
uicontrol('Style', 'pushbutton',... % make clickable button
 'String', 'Pause',... % text on button says pause
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position', [.483 .87 .034 .034],... % positons and sizes button first two numbers are position, second two are buton size
 'Callback', 'uiwait'); % executes uiwait when button pressed. uiwait pauses until uiresume command given

% play button
uicontrol('Style', 'pushbutton',... % make clickable button
 'String', 'Play',... % text on button says play
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position', [.449 .87 .034 .034],... % positons and sizes button first two numbers are position, second two are buton size
 'Callback', 'uiresume'); % end pause started by uiwait

% restart button
uicontrol('Style', 'pushbutton',... % make clickable button
 'String', 'Restart',... % text on button says restart
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position', [.517 .87 .034 .034],... % positons and sizes button first two numbers are position, second two are buton size
 'Callback', 'Infection'); % calls on this script, restarting everything

% exit button
uicontrol('Style', 'pushbutton',... % make clickable button
 'String', 'Exit',... % text on button says exit
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position', [.551 .87 .034 .034],... % positons and sizes button first two numbers are position, second two are buton size
 'Callback', 'KillSwitch = 1;,uiresume,close all;,clc'); % when button pressed, killswitch set to 1 to end loop and close executed to close the figures, clc clears text

% 2D view button
uicontrol('Style', 'pushbutton',... % make clickable button
 'String', '2D View',... % text on button says 2D View
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position', [.2 .13 .034 .034],... % positons and sizes button first two numbers are position, second two are buton size
 'Callback', 'view(0,90)'); % sets back to 2D view if you 3D rotate

% speed selecter
rspeed = uicontrol('Style', 'slider',... % make value selecting horizontal scroll bar, slider stored as rspeed so its value can be found later
 'Min',0,'Max',1,... % set min value of scroll bar to be 0 and max to be 1
 'Value',startspeed,... % set default position of scroll bar to user defined speed
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position', [.8 .125 .065 .02]); % positons and sizes slider first two numbers are position, second two are slider size
uicontrol('Style','text',... % make small text box for labling the above slider
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position',[.8 .15 .065 .02],... % positons and sizes text box first two numbers are position, second two are box size
 'String','Day Transition Speed') % sets what text will be in text box
% --
% secondary graph buttons
% secondary graph calling buttons
% population line graph button
uicontrol('Style', 'pushbutton',... % make clickable button
 'String', 'Population Line Graph',... % text on button says Population Line Graph
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position', [.91 .534 .08 .034],... % positons and sizes button first two numbers are position, second two are buton size
 'Callback', 'set(hfigG1,''Visible'',''on'');,waitforbuttonpress,figure(hfigG1)'); % pauses and opens line graph figure, also makes figure visible

% population pie chart button
uicontrol('Style', 'pushbutton',... % make clickable button
 'String', 'Population Pie Chart',... % text on button says Population Pie Chart
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigMAIN,... % add button to main figure
 'Position', [.91 .5 .08 .034],... % positons and sizes button first two numbers are position, second two are buton size
 'Callback', 'set(hfigG2,''Visible'',''on'');,waitforbuttonpress,figure(hfigG2)'); % pauses and opens pie chart figure, also makes figure visible
% text calling primary graph
% text on G1
uicontrol('Style', 'text',... % make small text box
 'String', 'Any Key or Mouse to Resume',... % text on button says Any Key or Mouse to Resume
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigG1,... % add button to first graph figure
 'Position', [.01 .01 .3 .04]); % positons and sizes button first two numbers are position, second two are buton size

% text on G2
uicontrol('Style', 'text',... % make small text box
 'String', 'Any Key or Mouse to Resume',... % text on button says Any Key or Mouse to Resume
 'Units','normalized',... % so screen size doesnt matter for button location
 'Parent',hfigG2,... % add button to second graph figure
 'Position', [.01 .01 .3 .04]); % positons and sizes button first two numbers are position, second two are buton size
% --

% --
% --

% start infecting

% --
% set up for infecting
% determine world population
WorldPopulation = World('sum',k(:,:,1));
% set the initial infected at the origin

% subtract healthy
k(originj,origini,1) = k(originj,origini,1)-initinfected;
% add infected
k(originj,origini,2) = k(originj,origini,2)+initinfected;
% first day
day=1;
% decide what conditions need to be met to end simulation

% everyone dead %

% all of infected die out %

% kill signal given by user %
% use while loop to accomplish this later

% set starting values for loop
KillSwitch = 0; % set kill switch to off so amimation plays
CureSwitch = 0; % switch to determine if CUREDAY has been set or not. 0 is not set, 1 is set
AirIndex = zeros(1,4); % create blank air index so the function calling it will alway have matrix to use
% count healthy population
Healthy = World('sum',k(:,:,1));
% count cured population (considered healthy, but cant be infected)
Cured = World('sum',k(:,:,4));
% count infected population
Infected = World('sum',k(:,:,2));
% count dead population
Dead = World('sum',k(:,:,3));
% --
% set day 1 graph
% set up line graph
figure(hfigG1) % select figure
hold on % set hold on for figure so data for each day displayed
plot(day,(Healthy+Cured),'g.',day,Cured,'b.',day,Infected,'r.',day,Dead,'k.') % plot populatons of the day
legend('Healthy','Cured','Infected','Dead',... % add names to legend
 'Location','SouthOutside',... % put legend outside of graph, directly below
 'Orientation','horizontal') % have legend oriented horizontally so that data display larger
set(hfigG1,'Visible','off') % use set function to make the figure invisible so that it will only be shown the user calls for it
% --
% set day 1 graph
% main graph
figure(hfigMAIN) % select figure
MAINMAP= surf(coriginal,COLOR); % make surface graph with coriginal as the height values and COLOR as the color scheme, save handle
line([5 5.0000000000001],[51 51],[4 4],'Color','k','LineStyle','-','Visible','on'); % create tiny dot at max z value to matlab zooming out, making map to small to view
colormap(colormapp); % use set colors
view(0,90) % set view to 0 horiz rotation and 90 vert elevation for a 2-D view
axis equal % make axes proportional so map isnt distorted
axis off % remove all axes markings so only world map is shown
% add text to graph
% creat strings that will be used
% add text to show world statistics
STRINGb = sprintf('Healthy: %11.0f Infected: %11.0f Dead: %11.0f',(Healthy+Cured),Infected,Dead);
% add text to show day number
STRINGc = sprintf('Day: %g',day);
% add text to show continent statistics
STRINGd = sprintf(...
'Africa:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nAsia:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nAustralia:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nEurope:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nNorth America:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nSouth America:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n',...
(Africa('sum',k(:,:,1))+Africa('sum',k(:,:,4))),Africa('sum',k(:,:,2)),Africa('sum',k(:,:,3)),...
(Asia('sum',k(:,:,1))+Asia('sum',k(:,:,4))),Asia('sum',k(:,:,2)),Asia('sum',k(:,:,3)),...
(Australia('sum',k(:,:,1))+Australia('sum',k(:,:,4))),Australia('sum',k(:,:,2)),Australia('sum',k(:,:,3)),...
(Europe('sum',k(:,:,1))+Europe('sum',k(:,:,4))),Europe('sum',k(:,:,2)),Europe('sum',k(:,:,3)),...
(NorthAmerica('sum',k(:,:,1))+NorthAmerica('sum',k(:,:,4))),NorthAmerica('sum',k(:,:,2)),NorthAmerica('sum',k(:,:,3)),...
(SouthAmerica('sum',k(:,:,1))+SouthAmerica('sum',k(:,:,4))),SouthAmerica('sum',k(:,:,2)),SouthAmerica('sum',k(:,:,3)));
% add strings to graph using text function

% first two number set postion on graph,

% next value is the text that will be displayed
TEXTa = text(48,0,'World');

TEXTb = text(37,-2,STRINGb);

TEXTc = text(94,53,STRINGc);

TEXTd= text(-13,26,STRINGd);
% add title with disease name
title(sprintf('Spread of %s',name))
% --
% start main loop
% allow user to start when ready
 if day==1

uiwait % pauses until play button clicked
 end
while Dead ~= WorldPopulation && Infected ~= 0 && KillSwitch ~= 1 % conditions from above
% change main display based on new data
figure(hfigMAIN) % select the figure
% determine speed using get function.

% get function retuns the value of a specified property for the object whos

% handle is specified. in this case the handle was set to rspeed earlier

% and the desired value is 'value'. subtract from 1 to get pause time
 speed=1-get(rspeed,'value');
% count healthy population
Healthy = World('sum',k(:,:,1));
% count cured population (considered healthy, but cant be infected)
Cured = World('sum',k(:,:,4));
% count infected population
Infected = World('sum',k(:,:,2));
% count dead population
Dead = World('sum',k(:,:,3));
% create new c matrix based off of population changes in k matrix
c = populationcolor(c,k,PopulationSpread,coriginal);
% set colors
[colormapp,COLOR] = colorfinder(c,colormat);
% set text strings
STRINGb = sprintf('Healthy: %11.0f Infected: %11.0f Dead: %11.0f',(Healthy+Cured),Infected,Dead);
STRINGc = sprintf('Day: %g',day);
STRINGd = sprintf(...
'Africa:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nAsia:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nAustralia:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nEurope:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nNorth America:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nSouth America:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n',...
(Africa('sum',k(:,:,1))+Africa('sum',k(:,:,4))),Africa('sum',k(:,:,2)),Africa('sum',k(:,:,3)),...
(Asia('sum',k(:,:,1))+Asia('sum',k(:,:,4))),Asia('sum',k(:,:,2)),Asia('sum',k(:,:,3)),...
(Australia('sum',k(:,:,1))+Australia('sum',k(:,:,4))),Australia('sum',k(:,:,2)),Australia('sum',k(:,:,3)),...
(Europe('sum',k(:,:,1))+Europe('sum',k(:,:,4))),Europe('sum',k(:,:,2)),Europe('sum',k(:,:,3)),...
(NorthAmerica('sum',k(:,:,1))+NorthAmerica('sum',k(:,:,4))),NorthAmerica('sum',k(:,:,2)),NorthAmerica('sum',k(:,:,3)),...
(SouthAmerica('sum',k(:,:,1))+SouthAmerica('sum',k(:,:,4))),SouthAmerica('sum',k(:,:,2)),SouthAmerica('sum',k(:,:,3)));
% update main graph
% set new color variables to surface graph
set(MAINMAP, 'CData',COLOR) % MAINMAP handle of the surf graph, CData is color matrix data
colormap(colormapp) % use new colormap
% update text displays
set(TEXTb,'String',STRINGb) % TEXTb handle of text object, String is the text to display
set(TEXTc,'String',STRINGc) % TEXTc handle of text object, String is the text to display
set(TEXTd,'String',STRINGd) % TEXTd handle of text object, String is the text to display
drawnow %animate
hold on % set hold to on so that plane trajectories are kept
% --
% update populations: kill infected from previous day, infect healthy by

% land, infect healthy by air
% kill infected
if Infected ~=0 % so that nothing is run if there are no infected left
if day>DeadlyDays % use the number of days user specified
k = lethality(k,Healthy,Cured,Infected,Dead,PercentDailyDeaths);
end
end
% calculate cell to cell spread
k = cell2cellspread(k,PopulationSpread,coriginal,landspread);
% calcualte air spread
if Healthy~=0 % so that nothing is done if there is no one to infect
[k,AirIndex] = AirPortSpread(k,PopulationSpread,AirSpread,AirIndex,hfigMAIN);
end
% cure infected
% determine total population affected by infection
PercentPopulationAffected = (Infected/WorldPopulation*100)+ (Dead/WorldPopulation*100);
% determine day cure becomes available
if PercentPopulationAffected >= PopPercentToResearch && CureSwitch == 0

CUREDAY = day + CureDays;

CureSwitch = 1;
end
% recount infected population for cure
Infected = World('sum',k(:,:,2));
if CureSwitch == 1 % so nothing is run until CUREDAY has been set
title(sprintf('%s Has Been Discovered! Cure Will Be Available In Days %g',name,CUREDAY-day))
if day>CUREDAY % cure doesnt start until after number of research days met
title(sprintf('The Cure For %s Has Been Discovered!',name))
if Infected ~=0 % so that nothing is run if there are no infected left
[k] = cure(k,Infected,PercentDailyCures);
end
end

end
% --
% update secondary graphs
% line graph population vs day
figure(hfigG1) % select figure
hold on % keep hold on so that data from each day displayed
plot(day,(Healthy+Cured),'g.',day,Cured,'b.',day,Infected,'r.',day,Dead,'k.') % plot populations
set(hfigG1,'Visible','off') % use set function to make the figure invisible so that it will only be shown the user calls for it
% pie chart population
figure(hfigG2) % select figure
clf % specify hold off since hold seems to carry over to this figure
pie([(Healthy+Cured),Infected,Dead],{'Healthy','Infected','Dead'}) % make pie chart with healthy, infected, dead populations and title them

% select colormap
if Dead==0 % colormap for no dead
colormap([0 1 0;1 0 0])
elseif (Healthy+Cured)==0 && Infected==0 % colormap for all dead
colormap([0 0 0])
elseif (Healthy+Cured)==0 % colormap for no healthy
colormap([1 0 0;0 0 0])
else % colormap for no infected and all the populations having values
colormap([0 1 0;1 0 0;0 0 0])
end
% add text display with population percentages
text(-1.8,-1.1,sprintf('Healthy: %.2f%%\nInfected %.2f%%\nDead %.2f%%\n'...
,(Healthy+Cured)/WorldPopulation*100,Infected/WorldPopulation*100,...
Dead/WorldPopulation*100))

set(hfigG2,'Visible','off') % use set function to make the figure invisible so that it will only be shown the user calls for it
% --
% prepair for next iteration
day=day+1; % advance day value
pause(speed) % pause for time designated by speed slider
if KillSwitch == 1

close all
clc
end

end
% --
% update display
if KillSwitch ~= 1 % this does not display if ended by user decision
figure(hfigMAIN) % select figure
% count healthy population
Healthy = World('sum',k(:,:,1));
% count cured population (considered healthy, but cant be infected)
Cured = World('sum',k(:,:,4));
% count infected population
Infected = World('sum',k(:,:,2));
% count dead population
Dead = World('sum',k(:,:,3));
% create new c matrix based off of population changes in k matrix
c = populationcolor(c,k,PopulationSpread,coriginal);
% set colors
[colormapp,COLOR] = colorfinder(c,colormat);
% set text strings
STRINGb = sprintf('Healthy: %11.0f Infected: %11.0f Dead: %11.0f',(Healthy+Cured),Infected,Dead);
STRINGc = sprintf('Day: %g',day-1);
STRINGd = sprintf(...
'Africa:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nAsia:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nAustralia:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nEurope:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nNorth America:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n\nSouth America:\n\nHealthy: %11.0f\nInfected: %11.0f\nDead: %11.0f\n',...
(Africa('sum',k(:,:,1))+Africa('sum',k(:,:,4))),Africa('sum',k(:,:,2)),Africa('sum',k(:,:,3)),...
(Asia('sum',k(:,:,1))+Asia('sum',k(:,:,4))),Asia('sum',k(:,:,2)),Asia('sum',k(:,:,3)),...
(Australia('sum',k(:,:,1))+Australia('sum',k(:,:,4))),Australia('sum',k(:,:,2)),Australia('sum',k(:,:,3)),...
(Europe('sum',k(:,:,1))+Europe('sum',k(:,:,4))),Europe('sum',k(:,:,2)),Europe('sum',k(:,:,3)),...
(NorthAmerica('sum',k(:,:,1))+NorthAmerica('sum',k(:,:,4))),NorthAmerica('sum',k(:,:,2)),NorthAmerica('sum',k(:,:,3)),...
(SouthAmerica('sum',k(:,:,1))+SouthAmerica('sum',k(:,:,4))),SouthAmerica('sum',k(:,:,2)),SouthAmerica('sum',k(:,:,3)));
% update main graph
% set new color variables to surface graph
set(MAINMAP, 'CData',COLOR) % MAINMAP handle of the surf graph, CData is color matrix data
colormap(colormapp) % use new colormap
% update text displays
set(TEXTb,'String',STRINGb) % TEXTb handle of text object, String is the text to display
set(TEXTc,'String',STRINGc) % TEXTc handle of text object, String is the text to display
set(TEXTd,'String',STRINGd) % TEXTd handle of text object, String is the text to display
drawnow %animate
% --
% final display
DAY=day-1; % since day advanced for next iteration at end of loop, go back one for day that loop ends
if Dead == WorldPopulation % everyone died, tell user results in title
title(sprintf('%s killed all human life on Earth in %g days!\n',name,DAY))
elseif Infected == 0 % no more infected, tell user results in title
title(sprintf('%s has been eradicated since everyone infected with %s has been cured or died in %g days. %.4f%% of original population remains.\n',name,name,DAY,(Healthy+Cured)/WorldPopulation*100))
end
% wait to close so user can view results, then clear and close
uiwait

close all
clc
end
% --

% --
CoordFinderTool

%

% Tool For Finding Map Coords

% %
% Author: Daniel Wimberly
% %

% Tool useful in making of infection, this is not actually used by

% infection and was not necessary to make infection. It was however very

% helpful for making all of the continent functions and adding the airport

% locations for the AirPortSpread function. Adds black dots to land cells

% if selected, also prints out selected coordines in neat format in

% command prompt. Simply copy all text printed and paste, a matrix with

% the selected coordinates is created. To end coordinate selection, select

% water or outside of graph bounds. Could be easily adapted to find coords

% in other matracies.

%
clear all
clc

close all
% creat map
c = zeros(51,101);

coriginal = World('c',c,1);

c = coriginal;
% graph the map
figure('Units','normalized',...% set units used for figure, normalized makes lower-left corner of the figure window (0,0) and upper-right corner (1,1)
 'Position',[0 0 1 .92],...% set to bottom left corner of screen at screen size of 92%
 'ToolBar','figure',...
 'Renderer','zbuffer') % ensure toolbar is present for 3D rotate since user interfaces remove this toolbar
surf(c); % make surface graph with c as the height values and COLOR as the color scheme
colormap([0 0 1;0 1 0]) % use set colors
view(0,90) % set view to 0 horiz rotation and 90 vert elevation for a 2-D view
axis equal % make axes proportional so map isnt distorted
axis off % remove all axes markings so only world map is shown
title('find coords')
fprintf('Coords=[...\n')
originii=57;

originjj=37;
while c(originjj,originii)==1 || c(originjj,originii)==2

[originii,originjj] = ginput(1);

originii=floor(originii);

originjj=floor(originjj);
if c(originjj,originii)==1

c(originjj,originii)=c(originjj,originii)+1;
elseif c(originjj,originii)==2
 break

end
if c(originjj,originii)==2
% graph the map

% figure('Units','normalized',...% set units used for figure, normalized makes lower-left corner of the figure window (0,0) and upper-right corner (1,1)

% 'Position',[0 0 1 .92],...% set to bottom left corner of screen at screen size of 92%

% 'ToolBar','figure') % ensure toolbar is present for 3D rotate since user interfaces remove this toolbar
surf(c); % make surface graph with c as the height values and COLOR as the color scheme
colormap([0 0 1;0 1 0;0 0 0]) % use set colors
view(0,90) % set view to 0 horiz rotation and 90 vert elevation for a 2-D view
axis equal % make axes proportional so map isnt distorted
axis off % remove all axes markings so only world map is shown
title('find coords')

drawnow
fprintf('%g %g;...\n',originjj,originii)
end

end
fprintf(']\n')
%

% %
Africa

function [M] = Africa(job,mat,value,layer)
% ===

% Author: Daniel Wimberly

% ===

%

% Africa: Utility for continent of Africa with coordinates of the continent

% on the 51 by 101 map built in. Capable of setting the values for each

% cell of the African continent at once in the c matrix (dispaly matrix),

% each layer of the k matrix (populations matrix), and it is also capible

% of finding the sum of all values that lie in the cells of the African

% continent.

%

% job: job title, options are 'c' (set values of c matrix or any single

% layer matrix), 'k' (set values of k matrix or any multi level matrix),

% and 'sum' (find sum of all values lying in the continent's cells).

%

% mat: designate the 51 by 101 matrix that will be used for the funtion

%

% value: designate the value to be set to the cells of the continent

%

% layer: if using 'k', designate the desired layer of the matrix mat.
switch job
 case 'c'
c=mat;

c(27:28,53:58)=value;

c(25:26,51:62)=value;

c(23:24,49:64)=value;

c(21:22,49:68)=value;

c(19:20,51:68)=value;

c(17:18,57:66)=value;

c(15:16,57:64)=value;

c(13:14,57:68)=value;

c(11:12,59:64)=value;

c(11:12,67:68)=value;

c(9:10,59:62)=value;

M=c;
 case 'k'
k=mat;

k(27:28,53:58,layer)=value;

k(25:26,51:62,layer)=value;

k(23:24,49:64,layer)=value;

k(21:22,49:68,layer)=value;

k(19:20,51:68,layer)=value;

k(17:18,57:66,layer)=value;

k(15:16,57:64,layer)=value;

k(13:14,57:68,layer)=value;

k(11:12,59:64,layer)=value;

k(11:12,67:68,layer)=value;

k(9:10,59:62,layer)=value;

M=k;
 case 'sum'
c=mat;

M=sum(sum(c(27:28,53:58)))+...
sum(sum(c(25:26,51:62)))+...
sum(sum(c(23:24,49:64)))+...
sum(sum(c(21:22,49:68)))+...
sum(sum(c(19:20,51:68)))+...
sum(sum(c(17:18,57:66)))+...
sum(sum(c(15:16,57:64)))+...
sum(sum(c(13:14,57:68)))+...
sum(sum(c(11:12,59:64)))+...
sum(sum(c(11:12,67:68)))+...
sum(sum(c(9:10,59:62)));
end

end
Asia

function [M] = Asia(job,mat,value,layer)
% ===

% Author: Daniel Wimberly

% ===

%

% Asia: Utility for continent of Asia with coordinates of the continent

% on the 51 by 101 map built in. Capable of setting the values for each

% cell of the Asian continent at once in the c matrix (dispaly matrix),

% each layer of the k matrix (populations matrix), and it is also capible

% of finding the sum of all values that lie in the cells of the Asian

% continent.

%

% job: job title, options are 'c' (set values of c matrix or any single

% layer matrix), 'k' (set values of k matrix or any multi level matrix),

% and 'sum' (find sum of all values lying in the continent's cells).

%

% mat: designate the 51 by 101 matrix that will be used for the funtion

%

% value: designate the value to be set to the cells of the continent

%

% layer: if using 'k', designate the desired layer of the matrix mat.
switch job
 case 'c'
c=mat;

c(41:42,1:2)=value;

c(39:40,1:4)=value;

c(45:46,83:84)=value;

c(43:44,77:86)=value;

c(41:42,63:64)=value;

c(41:42,69:100)=value;

c(39:40,63:100)=value;

c(37:38,63:100)=value;

c(35:36,63:94)=value;

c(35:36,99:100)=value;

c(33:34,63:94)=value;

c(31:32,64:92)=value;

c(29:30,64:90)=value;

c(29:30,93:94)=value;

c(27:28,65:88)=value;

c(27:28,91:92)=value;

c(25:26,65:68)=value;

c(25:26,71:88)=value;

c(23:24,67:70)=value;

c(23:24,75:78)=value;

c(23:24,81:84)=value;

c(21:22,75:76)=value;

c(21:22,81:84)=value;

c(19:20,81:82)=value;

c(17:18,83:88)=value;

c(15:16,85:86)=value;

M=c;
 case 'k'
k=mat;

k(41:42,1:2,layer)=value;

k(39:40,1:4,layer)=value;

k(45:46,83:84,layer)=value;

k(43:44,77:86,layer)=value;

k(41:42,63:64,layer)=value;

k(41:42,69:100,layer)=value;

k(39:40,63:100,layer)=value;

k(37:38,63:100,layer)=value;

k(35:36,63:94,layer)=value;

k(35:36,99:100,layer)=value;

k(33:34,63:94,layer)=value;

k(31:32,64:92,layer)=value;

k(29:30,64:90,layer)=value;

k(29:30,93:94,layer)=value;

k(27:28,65:88,layer)=value;

k(27:28,91:92,layer)=value;

k(25:26,65:68,layer)=value;

k(25:26,71:88,layer)=value;

k(23:24,67:70,layer)=value;

k(23:24,75:78,layer)=value;

k(23:24,81:84,layer)=value;

k(21:22,75:76,layer)=value;

k(21:22,81:84,layer)=value;

k(19:20,81:82,layer)=value;

k(17:18,83:88,layer)=value;

k(15:16,85:86,layer)=value;

M=k;
 case 'sum'
c=mat;

M=sum(sum(c(41:42,1:2)))+...
sum(sum(c(39:40,1:4)))+...
sum(sum(c(45:46,83:84)))+...
sum(sum(c(43:44,77:86)))+...
sum(sum(c(41:42,63:64)))+...
sum(sum(c(41:42,69:100)))+...
sum(sum(c(39:40,63:100)))+...
sum(sum(c(37:38,63:100)))+...
sum(sum(c(35:36,63:94)))+...
sum(sum(c(35:36,99:100)))+...
sum(sum(c(33:34,63:94)))+...
sum(sum(c(31:32,64:92)))+...
sum(sum(c(29:30,64:90)))+...
sum(sum(c(29:30,93:94)))+...
sum(sum(c(27:28,65:88)))+...
sum(sum(c(27:28,91:92)))+...
sum(sum(c(25:26,65:68)))+...
sum(sum(c(25:26,71:88)))+...
sum(sum(c(23:24,67:70)))+...
sum(sum(c(23:24,75:78)))+...
sum(sum(c(23:24,81:84)))+...
sum(sum(c(21:22,75:76)))+...
sum(sum(c(21:22,81:84)))+...
sum(sum(c(19:20,81:82)))+...
sum(sum(c(17:18,83:88)))+...
sum(sum(c(15:16,85:86)));
end

end
Australia

function [M] = Australia(job,mat,value,layer)
% ===

% Author: Daniel Wimberly

% ===

%

% Australia: Utility for continent of Australia with coordinates of the

% continent on the 51 by 101 map built in. Capable of setting the values

% for each cell of the Australian continent at once in the c matrix

% (dispaly matrix), each layer of the k matrix (populations matrix), and

% it is also capible of finding the sum of all values that lie in the

% cells of the Australian continent.

%

% job: job title, options are 'c' (set values of c matrix or any single

% layer matrix), 'k' (set values of k matrix or any multi level matrix),

% and 'sum' (find sum of all values lying in the continent's cells).

%

% mat: designate the 51 by 101 matrix that will be used for the funtion

%

% value: designate the value to be set to the cells of the continent

%

% layer: if using 'k', designate the desired layer of the matrix mat.
switch job
 case 'c'
c=mat;

c(15:16,93:96)=value;

c(13:14,91:94)=value;

c(11:12,87:96)=value;

c(9:10,87:96)=value;

c(7:8,87:90)=value;

c(7:8,93:96)=value;

M=c;
 case 'k'
k=mat;

k(15:16,93:96,layer)=value;

k(13:14,91:94,layer)=value;

k(11:12,87:96,layer)=value;

k(9:10,87:96,layer)=value;

k(7:8,87:90,layer)=value;

k(7:8,93:96,layer)=value;

M=k;
 case 'sum'
c=mat;

M=sum(sum(c(15:16,93:96)))+...
sum(sum(c(13:14,91:94)))+...
sum(sum(c(11:12,87:96)))+...
sum(sum(c(9:10,87:96)))+...
sum(sum(c(7:8,87:90)))+...
sum(sum(c(7:8,93:96)));
end

end
Europe

function [M] = Europe(job,mat,value,layer,value2)
% ===

% Author: Daniel Wimberly

% ===

%

% Europe: Utility for continent of Europe with coordinates of the continent

% on the 51 by 101 map built in. This function is different from the other

% continent fuctions because it separates main Europe and Greenland since

% thier population densities are vastly different and Greenland area wise

% is large while population wise is small. Capable of setting the values

% for each cell of the Europian continent at once (or seprating main

% Europe and Greenland) in the c matrix (dispaly matrix), each layer of the

% k matrix (or seprating main Europe and Greenland)(populations matrix),

% and it is also capible of finding the sum of all values that lie in the

% cells of the Europian continent (or seprating main Europe and Greenland).

%

% job: job title, options are 'c' (set values of c matrix or any single

% layer matrix), 'k' (set values of k matrix or any multi level matrix),

% 'specialk' (set values of k matrix or any multi level matrix while using

% seperate values for mainland Europe and Greenland),'sum' (find sum of all

% values lying in the continent's cells), 'sumgreen' (find sum of all

% values lying in Greenland's cells), and 'summain' (find sum of all values

% lying in mainland Europe's cells).

%

% mat: designate the 51 by 101 matrix that will be used for the funtion

%

% value: designate the value to be set to the cells of the continent

% (if using 'specialk', this will be the value used for main land Europe)

%

% layer: if using 'k' or 'specialk', designate the desired layer of the

% matrix mat.

%

% value2: if using 'specialk', this will be the value used for Greenland
switch job
 case 'c'
c=mat;

c(49:50,39:48)=value;

c(47:48,35:50)=value;

c(45:46,35:48)=value;

c(43:44,39:48)=value;

c(41:42,39:46)=value;

c(39:40,39:44)=value;

c(39:40,49:50)=value;

c(37:38,41:42)=value;

c(41:42,59:62)=value;

c(39:40,57:62)=value;

c(37:38,55:58)=value;

c(37:38,61:62)=value;

c(35:36,57:62)=value;

c(33:34,53:62)=value;

c(31:32,53:63)=value;

c(29:30,53:54)=value;

c(29:30,59:63)=value;

c(27:28,61:64)=value;

c(25:26,63:64)=value;

M=c;
 case 'k'
k=mat;

k(49:50,39:48,layer)=value;

k(47:48,35:50,layer)=value;

k(45:46,35:48,layer)=value;

k(43:44,39:48,layer)=value;

k(41:42,39:46,layer)=value;

k(39:40,39:44,layer)=value;

k(39:40,49:50,layer)=value;

k(37:38,41:42,layer)=value;

k(41:42,59:62,layer)=value;

k(39:40,57:62,layer)=value;

k(37:38,55:58,layer)=value;

k(37:38,61:62,layer)=value;

k(35:36,57:62,layer)=value;

k(33:34,53:62,layer)=value;

k(31:32,53:63,layer)=value;

k(29:30,53:54,layer)=value;

k(29:30,59:63,layer)=value;

k(27:28,61:64,layer)=value;

k(25:26,63:64,layer)=value;

M=k;
 case 'specialk'
k=mat;

k(49:50,39:48,layer)=value2;

k(47:48,35:50,layer)=value2;

k(45:46,35:48,layer)=value2;

k(43:44,39:48,layer)=value2;

k(41:42,39:46,layer)=value2;

k(39:40,39:44,layer)=value2;

k(39:40,49:50,layer)=value2;

k(37:38,41:42,layer)=value2;

k(41:42,59:62,layer)=value;

k(39:40,57:62,layer)=value;

k(37:38,55:58,layer)=value;

k(37:38,61:62,layer)=value;

k(35:36,57:62,layer)=value;

k(33:34,53:62,layer)=value;

k(31:32,53:63,layer)=value;

k(29:30,53:54,layer)=value;

k(29:30,59:63,layer)=value;

k(27:28,61:64,layer)=value;

k(25:26,63:64,layer)=value;

M=k;
 case 'sum'
c=mat;

M=sum(sum(c(49:50,39:48)))+...
sum(sum(c(47:48,35:50)))+...
sum(sum(c(45:46,35:48)))+...
sum(sum(c(43:44,39:48)))+...
sum(sum(c(41:42,39:46)))+...
sum(sum(c(39:40,39:44)))+...
sum(sum(c(39:40,49:50)))+...
sum(sum(c(37:38,41:42)))+...
sum(sum(c(41:42,59:62)))+...
sum(sum(c(39:40,57:62)))+...
sum(sum(c(37:38,55:58)))+...
sum(sum(c(37:38,61:62)))+...
sum(sum(c(35:36,57:62)))+...
sum(sum(c(33:34,53:62)))+...
sum(sum(c(31:32,53:63)))+...
sum(sum(c(29:30,53:54)))+...
sum(sum(c(29:30,59:63)))+...
sum(sum(c(27:28,61:64)))+...
sum(sum(c(25:26,63:64)));
 case 'sumgreen'
c=mat;

M=sum(sum(c(49:50,39:48)))+...
sum(sum(c(47:48,35:50)))+...
sum(sum(c(45:46,35:48)))+...
sum(sum(c(43:44,39:48)))+...
sum(sum(c(41:42,39:46)))+...
sum(sum(c(39:40,39:44)))+...
sum(sum(c(39:40,49:50)))+...
sum(sum(c(37:38,41:42)));
 case 'summain'
c=mat;

M=sum(sum(c(41:42,59:62)))+...
sum(sum(c(39:40,57:62)))+...
sum(sum(c(37:38,55:58)))+...
sum(sum(c(37:38,61:62)))+...
sum(sum(c(35:36,57:62)))+...
sum(sum(c(33:34,53:62)))+...
sum(sum(c(31:32,53:63)))+...
sum(sum(c(29:30,53:54)))+...
sum(sum(c(29:30,59:63)))+...
sum(sum(c(27:28,61:64)))+...
sum(sum(c(25:26,63:64)));
end

end
NorthAmerica

function [M] = NorthAmerica(job,mat,value,layer)
% ===

% Author: Daniel Wimberly

% ===

%

% North America: Utility for continent of North America with coordinates

% of the continent on the 51 by 101 map built in. Capable of setting the

% values for each cell of the North American continent at once in the c

% matrix (dispaly matrix), each layer of the k matrix (populations matrix),

% and it is also capible of finding the sum of all values that lie in the

% cells of the North American continent.

%

% job: job title, options are 'c' (set values of c matrix or any single

% layer matrix), 'k' (set values of k matrix or any multi level matrix),

% and 'sum' (find sum of all values lying in the continent's cells).

%

% mat: designate the 51 by 101 matrix that will be used for the funtion

%

% value: designate the value to be set to the cells of the continent

%

% layer: if using 'k', designate the desired layer of the matrix mat.
switch job
 case 'c'
c=mat;

c(49:50,31:34)=value;

c(47:48,25:34)=value;

c(45:46,21:32)=value;

c(43:44,19:32)=value;

c(41:42,7:34)=value;

c(39:40,7:30)=value;

c(39:40,33:36)=value;

c(37:38,7:28)=value;

c(37:38,33:34)=value;

c(35:36,9:10)=value;

c(35:36,17:30)=value;

c(35:36,33:36)=value;

c(33:34,17:38)=value;

c(31:32,19:34)=value;

c(29:30,19:32)=value;

c(27:28,21:32)=value;

c(25:26,21:26)=value;

c(23:24,7:10)=value;

c(23:24,25:28)=value;

c(21:22,29:30)=value;

M=c;
 case 'k'
k=mat;

k(49:50,31:34,layer)=value;

k(47:48,25:34,layer)=value;

k(45:46,21:32,layer)=value;

k(43:44,19:32,layer)=value;

k(41:42,7:34,layer)=value;

k(39:40,7:30,layer)=value;

k(39:40,33:36,layer)=value;

k(37:38,7:28,layer)=value;

k(37:38,33:34,layer)=value;

k(35:36,9:10,layer)=value;

k(35:36,17:30,layer)=value;

k(35:36,33:36,layer)=value;

k(33:34,17:38,layer)=value;

k(31:32,19:34,layer)=value;

k(29:30,19:32,layer)=value;

k(27:28,21:32,layer)=value;

k(25:26,21:26,layer)=value;

k(23:24,7:10,layer)=value;

k(23:24,25:28,layer)=value;

k(21:22,29:30,layer)=value;

M=k;
 case 'sum'
c=mat;

M=sum(sum(c(49:50,31:34)))+...
sum(sum(c(47:48,25:34)))+...
sum(sum(c(45:46,21:32)))+...
sum(sum(c(43:44,19:32)))+...
sum(sum(c(41:42,7:34)))+...
sum(sum(c(39:40,7:30)))+...
sum(sum(c(39:40,33:36)))+...
sum(sum(c(37:38,7:28)))+...
sum(sum(c(37:38,33:34)))+...
sum(sum(c(35:36,9:10)))+...
sum(sum(c(35:36,17:30)))+...
sum(sum(c(35:36,33:36)))+...
sum(sum(c(33:34,17:38)))+...
sum(sum(c(31:32,19:34)))+...
sum(sum(c(29:30,19:32)))+...
sum(sum(c(27:28,21:32)))+...
sum(sum(c(25:26,21:26)))+...
sum(sum(c(23:24,7:10)))+...
sum(sum(c(23:24,25:28)))+...
sum(sum(c(21:22,29:30)));
end

end
SouthAmerica

function [M] = SouthAmerica(job,mat,value,layer)
% ===

% Author: Daniel Wimberly

% ===

%

% South America: Utility for continent of South America with coordinates

% of the continent on the 51 by 101 map built in. Capable of setting the

% values for each cell of the South American continent at once in the c

% matrix (dispaly matrix), each layer of the k matrix (populations matrix),

% and it is also capible of finding the sum of all values that lie in the

% cells of the South American continent.

%

% job: job title, options are 'c' (set values of c matrix or any single

% layer matrix), 'k' (set values of k matrix or any multi level matrix),

% and 'sum' (find sum of all values lying in the continent's cells).

%

% mat: designate the 51 by 101 matrix that will be used for the funtion

%

% value: designate the value to be set to the cells of the continent

%

% layer: if using 'k', designate the desired layer of the matrix mat.
switch job
 case 'c'
c=mat;

c(19:20,31:38)=value;

c(17:18,31:40)=value;

c(15:16,33:44)=value;

c(13:14,33:42)=value;

c(11:12,35:42)=value;

c(9:10,35:40)=value;

c(7:8,33:38)=value;

c(5:6,33:36)=value;

c(3:4,33:36)=value;

c(1:2,33:34)=value;

M=c;
 case 'k'
k=mat;

k(19:20,31:38,layer)=value;

k(17:18,31:40,layer)=value;

k(15:16,33:44,layer)=value;

k(13:14,33:42,layer)=value;

k(11:12,35:42,layer)=value;

k(9:10,35:40,layer)=value;

k(7:8,33:38,layer)=value;

k(5:6,33:36,layer)=value;

k(3:4,33:36,layer)=value;

k(1:2,33:34,layer)=value;

M=k;
 case 'sum'
c=mat;

M=sum(sum(c(19:20,31:38)))+...
sum(sum(c(17:18,31:40)))+...
sum(sum(c(15:16,33:44)))+...
sum(sum(c(13:14,33:42)))+...
sum(sum(c(11:12,35:42)))+...
sum(sum(c(9:10,35:40)))+...
sum(sum(c(7:8,33:38)))+...
sum(sum(c(5:6,33:36)))+...
sum(sum(c(3:4,33:36)))+...
sum(sum(c(1:2,33:34)));
end

end
World

function [M] = World(job,mat,value,layer)
% ===

% Author: Daniel Wimberly

% ===

%

% World: Utility for all continents of the World. Uses all continent

% utility funtions which have the coordinates of the continents on the

% 51 by 101 map built in. Capable of setting the values for each

% cell of the World's continents at once in the c matrix (dispaly matrix),

% each layer of the k matrix (populations matrix), and it is also capible

% of finding the sum of all values that lie in the cells of the World's

% continents.

%

% job: job title, options are 'c' (set values of c matrix or any single

% layer matrix), 'k' (set values of k matrix or any multi level matrix),

% and 'sum' (find sum of all values lying in the World's cells).

%

% mat: designate the 51 by 101 matrix that will be used for the funtion

%

% value: designate the value to be set to the cells of the World

%

% layer: if using 'k', designate the desired layer of the matrix mat.
switch job
 case 'c'
mat=Africa(job,mat,value);

mat=Asia(job,mat,value);

mat=Australia(job,mat,value);

mat=Europe(job,mat,value);

mat=NorthAmerica(job,mat,value);

M=SouthAmerica(job,mat,value);
 case 'k'
mat=Africa(job,mat,value,layer);

mat=Asia(job,mat,value,layer);

mat=Australia(job,mat,value,layer);

mat=Europe(job,mat,value,layer);

mat=NorthAmerica(job,mat,value,layer);

M=SouthAmerica(job,mat,value,layer);
 case 'sum'
M=Africa(job,mat)+...
Asia(job,mat)+...
Australia(job,mat)+...
Europe(job,mat)+...
NorthAmerica(job,mat)+...
SouthAmerica(job,mat);
end
continentfinder

function [continent] = continentfinder(column,row)
% ===

% Author: Daniel Wimberly

% ===

%

% continentfinder: function for determining which continent a set of

% cordinates lies in.

%

% Creates continents matrix where each continent has a different assigned

% number value. This is done using the continent functions. Then takes

% user inserted cordinates and determines which value is at the cordinates.

% A switch is then used to determine which continent the cordinates are at

% using the assigned number. The continent is then saved as a string in a

% variable.

%

% inputs are column and row of cell

%

% output is variable with continent name as a string
% preallocate continents and set each continent to a specific value
continents = zeros(51,101);

continents = Africa('c',continents,1);

continents = Asia('c',continents,2);

continents = Australia('c',continents,3);

continents = Europe('c',continents,4);

continents = NorthAmerica('c',continents,5);

continents = SouthAmerica('c',continents,6);
% make variable that has continent value of cordinates
contin = continents(column,row);
% determine which continent coords are at
switch contin
 case 1
 continent = 'Africa';
 case 2
 continent = 'Asia';
 case 3
 continent = 'Australia';
 case 4
 continent = 'Europe';
 case 5
 continent = 'North America';
 case 6
 continent = 'South America';
 otherwise
 continent = 'NOT A CONTINENT';
end
end
colorfinder

function [colormapp,COLOR] = colorfinder(c,colormat)
% ===

% Author: Daniel Wimberly

% ===

%

% colorfinder: function for generating color scheme matrix and colormap

% for infection display

%

% colorfinder finds the number values corisponding to certian colors in

% matrix c and generates the correct colormap for it as well as the

% color matrix necessary to display those colors for those values. This

% is necessary because not all of the defined colors in colormat will be

% used therefor a color matrix and colormap containing only the colors

% being used at any given point is needed. The original c matrix values

% are color specific (each color has designated number ex: orange has a

% value of 6) while the values in the generated matrix COLOR only contains

% the number values in ascending order starting at 0 based off of the

% number of colors being used at the time since colormaps seem to like this

% more than numbers with gaps between them.

%

% inputs are matricies c and colormat, both of which are made in main

% Infection script. Do not change.

%

% outputs are colormapp and COLOR which are matracies that will be used in

% main Infection script as the color scheme matrix and the colormap. Do

% not change.
% determine size of inputs
[ff kk] = size(c);

[tt rr] = size(colormat); %#ok<NASGU>
% remove one from colormat since water is 0 in value
tt=tt-1;
% preallocate values vector
Values = zeros(1,tt);
% determine what values exist in c matrix
for ii= 1:ff
for jj= 1:kk

value = c(ii,jj);
 if value ~= 0
 Values(1,value)=value;
 end

end

end
% put numbers in order
Values = sort(Values);
%remove zeros from vector
for aa=1:tt
 if Values(1,aa)~= 0
 break
 end
end
Values=Values(1,aa:tt);
% determine the number of values
[a,b] = size(Values); %#ok<ASGLU>
% add 1 to length since position in colormat is one more due to water
yy=b+1;
% add one to all color values to get their row position in colormat
VALUES=Values+1;
% preallocate colormapp, set first row to blue since water always present
colormapp = zeros(yy,3);

colormapp(1,:) = colormat(1,:);
% make colormapp with the colors that will be used, set positions

% of colormapp based off of positions of colors in colormat that are

% used. Exclude colors not used
for zz = 2:yy
 zzz=zz-1;

colormapp(zz,:) = colormat(VALUES(1,zzz),:);
end
% preallocate COLOR
COLOR=zeros(ff,kk);
% make COLOR matrix, use Values vector positions as new values for

% color so that values in COLOR dont have gaps and colors wont be

% left out. This will be color scheme matrix
for ii= 1:ff
for jj= 1:kk
 for hh= 1:b

value = c(ii,jj);

value2 = Values(1,hh);
 if value==value2
 COLOR(ii,jj)=hh;
 end
 end

end

end
end
populationcolor

function [c] = populationcolor(c,k,PopulationSpread,coriginal)
% ===

% Author: Daniel Wimberly

% ===

%

% populationcolor: function for designating the color value for each cell

% in matrix c

%

% populationcolor finds the number values corisponding to the colors based

% off of the distinct populations in matrix k. In other words it reads the

% populations of each cell in k and decides what color they should be, then

% assigns that cell in matrix c the appropriate value that is designated

% for that color. Colors pertaining to dead populatins overrule colors

% pertaining to infected populations. If a cell is all dead it will be

% black, if not but it is over 50% dead it will be gray, if not either of

% these, it will be a shade of green to red depending on the population of

% infected (ex1: all dead value is 13, ex2: 75% dead value is 12, ex3: 25%

% infected value is 3).

%

% inputs are matracies c,k,PopulationSpread, and coriginal. These are all

% from the main Infection script. Do not change

%

% output is the new c matrix which contines the values pertaining to the

% colors that will be displayed in each cell. Do not change
% set loop for all coords
for ii= 1:51
for jj= 1:101
 if coriginal(ii,jj) == 1 % so that water is never used
% determine origal population of cell
 OriginalHealthy = PopulationSpread(ii,jj);
% determine current infected and dead populations
 NewInfected = k(ii,jj,2);
 NewDead = k(ii,jj,3);
% determine percent of cell population that is infected and dead
 PercentInfected = (NewInfected*100)/OriginalHealthy;
 PercentDead = (NewDead*100)/OriginalHealthy;
% if 100% dead set black, if not and greater than or equal to 50% dead,

% set to gray, if not either, set to shade of green to red based off

% of % infected
 if PercentDead==100
 c(ii,jj)=13;
 elseif PercentDead>=50
 c(ii,jj)=12;
 else
 if PercentInfected<10
 c(ii,jj)=1;
 elseif PercentInfected>=10 && PercentInfected<20
 c(ii,jj)=2;
 elseif PercentInfected>=20 && PercentInfected<30
 c(ii,jj)=3;
 elseif PercentInfected>=30 && PercentInfected<40
 c(ii,jj)=4;
 elseif PercentInfected>=40 && PercentInfected<50
 c(ii,jj)=5;
 elseif PercentInfected>=50 && PercentInfected<60
 c(ii,jj)=6;
 elseif PercentInfected>=60 && PercentInfected<70
 c(ii,jj)=7;
 elseif PercentInfected>=70 && PercentInfected<80
 c(ii,jj)=8;
 elseif PercentInfected>=80 && PercentInfected<90
 c(ii,jj)=9;
 elseif PercentInfected>=90 && PercentInfected<100
 c(ii,jj)=10;
 elseif PercentInfected==100
 c(ii,jj)=11;
 end
 end
 end
end

end
end
AirPortSpread

function [k,AirIndex] = AirPortSpread(k,PopulationSpread,AirSpread,AirIndex,hfigMAIN)
% ===

% Author: Daniel Wimberly

% ===

% AirPortSpread: Function for determining air spread of infection between

% cells via airport locations. Function also graphs a black line between

% the origin airport and the destination airport as well as a red box

% around the destination air port so that spread between airports can be

% visualised.

%

% Works off of a system of 51 airports strategically placed to represent

% major cities/sites that would be connected to other sites (distant and

% nearby) by air travel. In this situation, some airports take the place

% of sea ports so that air spread and water spread are combined into one.

% Airport locations are pre-set and found using the CoordFinderTool. Looks

% at every airport and if conditions of population and randomness are met,

% selectes a destination airport at random and a random number of new

% infected (between 1 and 10) of new infected at the destination airport

% (half of inital infected capabilites). The new infected are then

% converted from healthy to infected. All of the chosen origin-destination

% combinations are indexed so that trajectories are not graphed over and

% over again. After each pair or airports is chosen, the index is searched

% for duplicates. If none are found, a black line is graphed from the

% origin to the destination and a red box is placed around the destination

% airport. To indicated that the infection has spread to that location.

%

% inputs k,PopulationSpread, and AirIndex are matracies from the main

% infection script. Do not change.

%

% inputs Healthy and AirSpread are variables from the main infection

% script. Do not change

%

% input hfigMAIN is the handle of the main figure from the main function

% and used to set the figure to graph in. Do not change

%

% Exports new k matrix with new healthy and infected populations, and a new

% AirIndex with added values with will be run back through this funciton in

% the next iteration. Do not change.
% if Healthy~=0 % so that nothing is done if there is no one to infect
figure(hfigMAIN) % set figure
% use preset coords of major airport locations
AirPortDocksCoords = [3 33;3 36;11 42;12 41;21 30;25 26;25 25;23 9;23 10;...
31 34;31 19;32 23;39 36;37 27;37 42;39 49;39 50;11 67;9 60;10 61;19 53;...
26 61;24 64;25 62;7 87;7 96;10 96;17 83;17 88;15 85;28 92;29 93;21 76;...
26 77;21 84;27 88;27 86;34 66;24 70;26 67;30 54;31 54;37 62;36 61;...
30 60;38 55;37 57;37 58;35 58;32 56;34 54];
% determine number of coords
NumberAirPortsDocks = length(AirPortDocksCoords);
% go through every airport/dock location
for CoordNumber = 1:NumberAirPortsDocks

iii=AirPortDocksCoords(CoordNumber,1);

jjj=AirPortDocksCoords(CoordNumber,2);
% determine percent infected of cell. the greater the percentage, the

% greater the chance of a spread
PercentInfected = k(iii,jjj,2)/PopulationSpread(iii,jjj);
% determine if infected will spread using rand. chance to spread based off

% of population and user input air spread percentage. Input percentage

% only effects the last 10% of the rand, meaning that at 100% spread, RAND2

% has to be greater than .9 and at 1% spread, RAND2 has to be greater than

% .999. This way randomness of people traveling is well preserved.
RAND1=rand;

RAND2=rand;
 if PercentInfected > RAND1
 if RAND2>AirSpread
% pick random airport/dock coords for infection to spread to. If coords

% are the same as origin port, just becomes intercell spread. use randi to

% get random integer
RandCoord = randi(NumberAirPortsDocks,1,1); % produces 1 random integer between 1 and NumberAirPortsDocks
ii=AirPortDocksCoords(RandCoord,1);

jj=AirPortDocksCoords(RandCoord,2);
% randomly determine number of new infected at new port (1 to 10)
NumberNewInfected = randi(10,1,1); % produces 1 random integer between 1 and 10
% determine remaining helthy
RemainingHealthy=k(ii,jj,1);
% convert healthy to infected making sure not to remove more than existant

% healthy
 if RemainingHealthy>NumberNewInfected
 k(ii,jj,1)= k(ii,jj,1)-NumberNewInfected;
 k(ii,jj,2)= k(ii,jj,2)+NumberNewInfected;
 else
 k(ii,jj,1)= k(ii,jj,1)-RemainingHealthy;
 k(ii,jj,2)= k(ii,jj,2)+RemainingHealthy;
 end
% determine if trajectory has previously been drawn
% determine size of index
[AirIndexSize,fff] = size(AirIndex); %#ok<NASGU>
% check for duplicates
Duplicate = 0;
for AirIndexIter = 1:AirIndexSize
if iii==AirIndex(AirIndexIter,1) && jjj==AirIndex(AirIndexIter,2) &&...
 ii==AirIndex(AirIndexIter,3) && jj==AirIndex(AirIndexIter,4)

Duplicate = 1;
end

end
% plot line of flight path of airplane if no duplicates found
if Duplicate == 0 % if no duplicates found, graph
if iii ~= ii && jjj ~= jj % if origin and destination are not the same, graph
% index data
AirIndex(AirIndexSize+1,1) = iii;

AirIndex(AirIndexSize+1,2) = jjj;

AirIndex(AirIndexSize+1,3) = ii;

AirIndex(AirIndexSize+1,4) = jj;
% determine equation of line, find m and b of y=mx+b, and a of equation of

% parabola for z
m=(ii-iii)/(jj-jjj);

b=ii-m*jj;

midpoint = (jjj+jj)/2;

a=-3/((jjj-midpoint)^2);
% create x values
x=linspace(jjj,jj,20);
% create y values
y=m*x+b;
% create z values in parabolic form so it looks like a plane takes off at

% origin and lands at destination
z = a*((x-midpoint).^2)+4;
% graph plane trajectories and destination
plot3(x,y,z,'k-.');

plot3(jj,ii,1,'rs');
end

end
 end
 end

end
% end
end
cell2cellspread

function [k] = cell2cellspread(k,PopulationSpread,coriginal,landspread)
% ===

% Author: Daniel Wimberly

% ===

% cell2cellspread: Funtion for determining land spread of infection between

% cells.

%

% Considers 8 neighboring squares to the one being looked at. If squares

% touching sides have infected, 50% of the side squares infected effect

% the square in question. So if all four of a square's side neighbors are

% at 100% infected, then it gets 200 out of 'landspread' infection points.

% If the diagonals are at 100%, they can only effect the square in question

% by 20% meaning if all 4 diagonls were at 100% infected, then they would

% effect the square by 80 points out of 'landspread' infection points.

% However many infection points out of 'landspread' infection points

% divided by 'landspread' infection points is the max percentage of the

% square in question that can get infected by its neighbors. When infected

% population is too small to spread to surrounding cells, two different

% condtions are used. First condition slowly gets cell infected population

% up to 10. Second condition alows infected to grow slightly faster and

% assumes that each infected runs into 25 people and .007 is the proportion

% of the 25 that get infected. These two conditions are called if the cell

% has infected but not enough to spread a single infected to a neighbor.

% The first condition is necessary since the second case won't increase

% infected if the cell has less than 10 infected.

%

% inputs k,PopulationSpread, and coriginal are all matracies from the main

% infection function that need to be imported. Do not change these.

%

% input landspread is a variable imported from main infection function

% and is used to determine the maximum ammount that the cell in question

% can be effected by its neighbors, and is also the number of infection

% points. 280 is 100%, 2800 is 10%, 28000 is 1% and so on. The larger

% landspread is, the slower the infection spreads over land. Do not change

% this either

%

% Exports new k matrix with new healthy and infected populations
for ii= 1:51
for jj= 1:101
 if coriginal(ii,jj) == 1 % so that water is never used
 if k(ii,jj,1)>0 % helps keep cells with no healthy from being used
% step 1: find out the percentage of infected in the 8 surrounding cells
% neighboring by side

% if conditions deal with the far sides of the map, if j reaches side, sent

% to opposit side so russia is connected
if (jj-1)>0

leftside=(k(ii,jj-1,2)*100)/(PopulationSpread(ii,jj-1));
elseif (jj-1)==0

leftside=(k(ii,100,2)*100)/(PopulationSpread(ii,100));
end
if (ii-1)>0

topside=(k(ii-1,jj,2)*100)/(PopulationSpread(ii-1,jj));
else
topside=0;
end
if (jj+1)<101

rightside=(k(ii,jj+1,2)*100)/(PopulationSpread(ii,jj+1));
elseif (jj+1)==101

rightside=(k(ii,1,2)*100)/(PopulationSpread(ii,1));
end
if (ii+1)<52

bottomside=(k(ii+1,jj,2)*100)/(PopulationSpread(ii+1,jj));
else
bottomside=0;
end
% diagonals

% if conditions deal with the far sides of the map, if j reaches side, sent

% to opposit side so russia is connected
if (ii-1)>0 && (jj-1)>0

topleft=(k(ii-1,jj-1,2)*100)/(PopulationSpread(ii-1,jj-1));
elseif (ii-1)>0 && (jj-1)==0

topleft=(k(ii-1,100,2)*100)/(PopulationSpread(ii-1,100));
else
topleft=0;
end
if (ii-1)>0 && (jj+1)<101

topright=(k(ii-1,jj+1,2)*100)/(PopulationSpread(ii-1,jj+1));
elseif (ii-1)>0 && (jj+1)==101

topright=(k(ii-1,1,2)*100)/(PopulationSpread(ii-1,1));
else
topright=0;
end
if (ii+1)<52 && (jj+1)<101

bottomright=(k(ii+1,jj+1,2)*100)/(PopulationSpread(ii+1,jj+1));
elseif (ii+1)<52 && (jj+1)==101

bottomright=(k(ii+1,1,2)*100)/(PopulationSpread(ii+1,1));
else
bottomright=0;
end
if (ii+1)<52 && (jj-1)>0

bottomleft=(k(ii+1,jj-1,2)*100)/(PopulationSpread(ii+1,jj-1));
elseif (ii+1)<52 && (jj-1)==0

bottomleft=(k(ii+1,100,2)*100)/(PopulationSpread(ii+1,100));
else
bottomleft=0;
end
% step 2: using the percentage infected of the neighbors, find out

% infection points out of 'landspread', then divide by 'landspread' and

% multiply by 100 to get max percentage of new infected. ensure cases of

% NaN do not exist due to neighbors being water
% turn results of NaN into 0
if isnan(leftside) == 1
 leftside=0;
end
if isnan(topside) == 1
 topside=0;
end
if isnan(rightside) == 1
 rightside=0;
end
if isnan(bottomside) == 1
 bottomside=0;
end
if isnan(topleft) == 1
 topleft=0;
end
if isnan(topright) == 1
 topright=0;
end
if isnan(bottomright) == 1
 bottomright=0;
end
if isnan(bottomleft) == 1
 bottomleft=0;
end
% determine infection points out of 'landspread'.
infectionpoints=(leftside/2)+(topside/2)+(rightside/2)+(bottomside/2)+...
 (topleft/5)+(topright/5)+(bottomright/5)+(bottomleft/5);
% determine max percentage of new infected
maxpercentinfect=(infectionpoints*100)/landspread;
% step 3: using rand, determine what percent of the max percentage will

% actually get infected
r=100*rand;
actualpercentinfect=(maxpercentinfect*r)/100;
% step 4: using percent number that will actually get infected, convert

% healthy to infected. if number needed to convert is greater than

% remaining healthy population, just convert remaining healthy population

% to infected so that there wont be negative healthy people and then the

% cell will no longer be considered. Use floor to avoid partial people
% determine how many people the precent infected is for ii,jj
NumberNewInfected = floor((PopulationSpread(ii,jj)*actualpercentinfect)/100);
% infect new people

% ensure number new infected is more than number remaining healthy. If not,

% just remove remaining healthy people
RemainingHealthy=k(ii,jj,1);
if NumberNewInfected==0 && k(ii,jj,2)>=1 % if cell has infected but not enough to spread to neighbors
 if k(ii,jj,2)<=10 % less than ten infected. 30% chance new person infected
 RAND=rand;
 if RAND > .7
 k(ii,jj,1)= k(ii,jj,1)-1;
 k(ii,jj,2)= k(ii,jj,2)+1;
 end
 elseif k(ii,jj,2)>10 % more than ten infected, increase infected at 40% chance until spread to neighbors possible
 RAND=rand;
 if RAND > .6
 NumberNewInfected=floor(25*.007*k(ii,jj,2));
 if RemainingHealthy>NumberNewInfected
 k(ii,jj,1)= k(ii,jj,1)-NumberNewInfected;
 k(ii,jj,2)= k(ii,jj,2)+NumberNewInfected;
 else
 k(ii,jj,1)= k(ii,jj,1)-RemainingHealthy;
 k(ii,jj,2)= k(ii,jj,2)+RemainingHealthy;
 end
 end
 end

else % if cell has enough infected to spread to neighbors
 if RemainingHealthy>NumberNewInfected
 k(ii,jj,1)= k(ii,jj,1)-NumberNewInfected;
 k(ii,jj,2)= k(ii,jj,2)+NumberNewInfected;
 else
 k(ii,jj,1)= k(ii,jj,1)-RemainingHealthy;
 k(ii,jj,2)= k(ii,jj,2)+RemainingHealthy;
 end

end
 end
 end

end

end
end
cure

function [k] = cure(k,Infected,PercentDailyCures)
% ===

% Author: Daniel Wimberly

% ===

% cure: function for determining infected population cured when cure

% introduced

%

% Determines number of infected to cure by taking the user entered percent

% of daily cures and calculating the number of people to cure in that day.

% Then all coordinates containing infected are found and stored.

% Coordinates then chosen at random from list. Then a random proportion

% of the number needed to cure is removed from the random cell. If random

% proportion is greater than the cell population of infected, all infected

% are cured. Process is repeated until all of the infected that were

% calculated to be cured on the day are cured.

%

% inputs matrix k is matrix from main infection funcion. Do not change

%

% inputs Infected and PercentDailyCures which are variable from main

% infection function. Do not change

%

% exports k with updated infected populations and cured populations
% determine number infected to cure, use floor to avoid partial people
DailyCure = floor(PercentDailyCures*Infected);
% due to the nature of percentages, towards the end when there are little

% infected left to cure, the curing slows down and then stops. Under

% these conditions new DailyCure is set so that the rest of the infected

% are cured. values chosen are chose because they speed up the end

% effectively
if DailyCure<100000

PercentDailyCures = 0.5;

DailyCure = floor(PercentDailyCures*Infected);
end
if DailyCure==0

PercentDailyCures = 1;

DailyCure = floor(PercentDailyCures*Infected);
end
% determine cordinates of infected, allow to grow
iter=1;
for ii= 1:51
for jj=1:101
 if k(ii,jj,2)~=0
 Coords(iter,1)=ii; %#ok<AGROW>
 Coords(iter,2)=jj; %#ok<AGROW>
 iter=iter+1;
 end

end

end
% determine lenght of index
[NumbCoords,aaa]=size(Coords); %#ok<NASGU>
% cure infected until desired number reached
while DailyCure ~= 0
% pick random coords, randi used to produce a random integer
RandCoord = randi(NumbCoords,1,1); % produces 1 random integer between 1 and NumbCoords
ii=Coords(RandCoord,1);

jj=Coords(RandCoord,2);
% determine number infected at the cell
CellInfected = k(ii,jj,2);
% determine randomly how many people in this cell could be cured considering the

% total number people needed to cure (DailyCure)
RandCure=randi(DailyCure,1,1); % produces 1 random integer between 1 and DailyCure
% determine if this many infected can be cured in this cell and if not

% how many actually can. then convert infected to cured
if RandCure < CellInfected && RandCure < DailyCure

k(ii,jj,2)=k(ii,jj,2)-RandCure;

k(ii,jj,4)=k(ii,jj,4)+RandCure;

DailyCure=DailyCure-RandCure;
elseif RandCure >= CellInfected && RandCure < DailyCure

k(ii,jj,2)=k(ii,jj,2)-CellInfected;

k(ii,jj,4)=k(ii,jj,4)+CellInfected;

DailyCure=DailyCure-CellInfected;
elseif RandCure < CellInfected && RandCure == DailyCure

k(ii,jj,2)=k(ii,jj,2)-DailyCure;

k(ii,jj,4)=k(ii,jj,4)+DailyCure;

DailyCure=DailyCure-DailyCure;
elseif RandCure >= CellInfected && RandCure == DailyCure

k(ii,jj,2)=k(ii,jj,2)-CellInfected;

k(ii,jj,4)=k(ii,jj,4)+CellInfected;

DailyCure=DailyCure-CellInfected;
end

end
% end
end
lethality

function [k] = lethality(k,Healthy,Cured,Infected,Dead,PercentDailyDeaths)
% ===

% Author: Daniel Wimberly

% ===

% lethality: function for determining infected population killed by

% infection.

%

% Determines number of infected to kill by taking the user entered percent

% of daily deaths and calculating the number of people to kill in that day.

% Then all coordinates containing infected are found and stored.

% Coordinates then chosen at random from list. Then a random proportion

% of the number needed to kill is removed from the random cell. If random

% proportion is greater than the cell population of infected, all infected

% are killed. Process is repeated until all of the infected that were

% calculated to be killed on the day are killed.

%

% inputs Healthy,Cured,Infected,Dead, and PercentDailyDeaths are all variables

% from the main infection function that need to be imported. Do not change

% these.

%

% input k is a matrix from the main infection function that needs to be

% imported. Do not change.

%

% Exports new k matrix with new infected and dead populations
% if Infected ~=0 % so that nothing is run if there are no infected
% determine number infected to kill, use floor to avoid partial people
DailyDeath = floor(PercentDailyDeaths*Infected);
% due to the nature of percentages, towards the end when there are little

% infected left to kill, the killing slows down and then stops. Under

% these conditions new DailyDeath is set so that the rest of the infected

% are finished off. values chosen are chose because they speed up the end

% effectively
if DailyDeath<100000 && Dead > (Healthy+ Cured)

PercentDailyDeaths = 0.5;

DailyDeath = floor(PercentDailyDeaths*Infected);
end
if DailyDeath==0 && Dead > Infected

PercentDailyDeaths = 1;

DailyDeath = floor(PercentDailyDeaths*Infected);
end
% determine cordinates of infected, allow to grow
iter=1;
for ii= 1:51
for jj=1:101
 if k(ii,jj,2)~=0
 Coords(iter,1)=ii; %#ok<AGROW>
 Coords(iter,2)=jj; %#ok<AGROW>
 iter=iter+1;
 end

end

end
% determine lenght of index
[NumbCoords,aaa]=size(Coords); %#ok<NASGU>
% kill infected until desired number reached
while DailyDeath ~= 0
% pick random coords, randi used to produce a random integer
RandCoord = randi(NumbCoords,1,1); % produces 1 random integer between 1 and NumbCoords
ii=Coords(RandCoord,1);

jj=Coords(RandCoord,2);
% determine number infected at the cell
CellInfected = k(ii,jj,2);
% determine randomly how many people in this cell could die considering the

% total number people needed to kill (DailyDeath)
RandDeath=randi(DailyDeath,1,1); % produces 1 random integer between 1 and DailyDeath
% determine if this many infected can be killed off in this cell and if not

% how many actually can. then convert infected to dead
if RandDeath < CellInfected && RandDeath < DailyDeath

k(ii,jj,2)=k(ii,jj,2)-RandDeath;

k(ii,jj,3)=k(ii,jj,3)+RandDeath;

DailyDeath=DailyDeath-RandDeath;
elseif RandDeath >= CellInfected && RandDeath < DailyDeath

k(ii,jj,2)=k(ii,jj,2)-CellInfected;

k(ii,jj,3)=k(ii,jj,3)+CellInfected;

DailyDeath=DailyDeath-CellInfected;
elseif RandDeath < CellInfected && RandDeath == DailyDeath

k(ii,jj,2)=k(ii,jj,2)-DailyDeath;

k(ii,jj,3)=k(ii,jj,3)+DailyDeath;

DailyDeath=DailyDeath-DailyDeath;
elseif RandDeath >= CellInfected && RandDeath == DailyDeath

k(ii,jj,2)=k(ii,jj,2)-CellInfected;

k(ii,jj,3)=k(ii,jj,3)+CellInfected;

DailyDeath=DailyDeath-CellInfected;
end

end
% end
end
centeredmenu

function k = centeredmenu(xHeader,varargin)
%

% NOTE:

% User modified version of MathWorks created, built in MATLAB function

% 'menu'. % Modified by Daniel Wimberly %

% Purpose of modification: To move the menu displayed by menu function

% closer the the center of the screen, around where inputdlg displays.

% Modifications made on lines 145 and 146.

% Modified Variables: winTopGap and winLeftGap, values increased

% Nothing else changed, works the exact same as normal menu other than that

% it is called by centeredmenu insted of menu.

% %

%

% %

% NOTE: CALLED BY CENTEREDMENU INSTEAD OF MENU

%

%

%

%MENU Generate a menu of choices for user input.

% CHOICE = MENU(HEADER, ITEM1, ITEM2, ...) displays the HEADER

% string followed in sequence by the menu-item strings: ITEM1, ITEM2,

% ... ITEMn. Returns the number of the selected menu-item as CHOICE,

% a scalar value. There is no limit to the number of menu items.

%

% CHOICE = MENU(HEADER, ITEMLIST) where ITEMLIST is a string, cell

% array is also a valid syntax.

%

% On most graphics terminals MENU will display the menu-items as push

% buttons in a figure window, otherwise they will be given as a numbered

% list in the command window (see example, below).

%

% Example:

% K = menu('Choose a color','Red','Blue','Green')

% %creates a figure with buttons labeled 'Red', 'Blue' and 'Green'

% %The button clicked by the user is returned as K (i.e. K = 2

% implies that the user selected Blue).

%

% See also UICONTROL, UIMENU, GUIDE.
% Copyright 1984-2010 The MathWorks, Inc.

% $Revision: 5.21.4.7 $ $Date: 2010/07/02 16:16:48 $
%===

% Check input

%---
if nargin < 2,
 disp('MENU: No menu items to choose from.')
 k=0;
 return;
elseif nargin==2 && iscell(varargin{1}),
 ArgsIn = varargin{1}; % a cell array was passed in
else
 ArgsIn = varargin; % use the varargin cell array
end
%---

% Check computer type to see if we can use a GUI

%---
useGUI = 1; % Assume we can use a GUI
if isunix, % Unix?
 useGUI = length(getenv('DISPLAY')) > 0;
end % if
%---

% Create the appropriate menu

%---
if useGUI,
 % Create a GUI menu to acquire answer "k"
 k = local_GUImenu(xHeader, ArgsIn);
else
 % Create an ascii menu to acquire answer "k"
 k = local_ASCIImenu(xHeader, ArgsIn);
end % if
%%###

% END : main function "menu"

%%###
%%###

% BEGIN : local function local_ASCIImenu

%%###
function k = local_ASCIImenu(xHeader, xcItems)
% local function to display an ascii-generated menu and return the user's

% selection from that menu as an index into the xcItems cell array
%---

% Calculate the number of items in the menu

%---
numItems = length(xcItems);
%---

% Continuous loop to redisplay menu until the user makes a valid choice

%---
while 1,
 % Display the header
 disp(' ')
 disp(['----- ',xHeader,' -----'])
 disp(' ')
 % Display items in a numbered list
 for n = 1 : numItems
 disp([' ' int2str(n) ') ' xcItems{n}])
 end
 disp(' ')
 % Prompt for user input
 k = input('Select a menu number: ');
 % Check input:
 % 1) make sure k has a value
 if isempty(k), k = -1; end;
 % 2) make sure the value of k is valid
 if (k < 1) || (k > numItems) ...
 || ~strcmp(class(k),'double') ...
 || ~isreal(k) || (isnan(k)) || isinf(k),
 % Failed a key test. Ask question again
 disp(' ')
 disp('Selection out of range. Try again.')
 else
 % Passed all tests, exit loop and return k
 return
 end % if k...
end % while 1
%%###

% END : local function local_ASCIImenu

%%###
%%###

% BEGIN : local function local_GUImenu

%%###
function k = local_GUImenu(xHeader, xcItems)
% local function to display a Handle Graphics menu and return the user's

% selection from that menu as an index into the xcItems cell array
%===

% SET UP

%===

% Set spacing and sizing parameters for the GUI elements

%---
MenuUnits = 'pixels'; % units used for all HG objects
textPadding = [22 12]; % extra [Width Height] on uicontrols to pad text
uiGap = 5; % space between uicontrols
uiBorder = 10; % space between edge of figure and any uicontol
winTopGap = 250; % gap between top of screen and top of figure **
winLeftGap = 700; % gap between side of screen and side of figure **
winWideMin = 140; % minimin window width necessary to show title
% ** "figure" ==> viewable figure. You must allow space for the OS to add

% ** positioning edited so that closer to center of screen

% a title bar (aprx 42 points on Mac and Windows) and a window border

% (usu 2-6 points). Otherwise user cannot move the window.
%---

% Calculate the number of items in the menu

%---
numItems = length(xcItems);
%===

% BUILD

%===

% Create a generically-sized invisible figure window

%--
menuFig = figure('Units' ,MenuUnits, ...
 'Visible' ,'off', ...
 'NumberTitle' ,'off', ...
 'Name' ,'MENU', ...
 'Resize' ,'off', ...
 'Colormap' ,[], ...
 'MenuBar' ,'none',...
 'ToolBar' ,'none' ...
);
%--

% Add generically-sized header text with same background color as figure

%--
hText = uicontrol(...
 'Style' ,'text', ...
 'String' ,xHeader, ...
 'Units' ,MenuUnits, ...
 'Position' ,[100 100 100 20], ...
 'HorizontalAlignment' ,'center',...
 'BackgroundColor' ,get(menuFig,'Color'));
% Record extent of text string
maxsize = get(hText, 'Extent');

textWide = maxsize(3);

textHigh = maxsize(4);
%--

% Add generically-spaced buttons below the header text

%--

% Loop to add buttons in reverse order (to automatically initialize numitems).

% Note that buttons may overlap, but are placed in correct position relative

% to each other. They will be resized and spaced evenly later on.
hBtn = zeros(numItems, 1);
for idx = numItems : -1 : 1; % start from top of screen and go down
 n = numItems - idx + 1; % start from 1st button and go to last
 % make a button
 hBtn(n) = uicontrol(...
 'Units' ,MenuUnits, ...
 'Position' ,[uiBorder uiGap*idx textHigh textWide], ...
 'Callback' , {@menucallback, n}, ...
 'String' ,xcItems{n});
end % for
%===

% TWEAK

%===

% Calculate Optimal UIcontrol dimensions based on max text size

%--
cAllExtents = get(hBtn, {'Extent'}); % put all data in a cell array
AllExtents = cat(1, cAllExtents{:}); % convert to an n x 3 matrix
maxsize = max(AllExtents(:,3:4)); % calculate the largest width & height
maxsize = maxsize + textPadding; % add some blank space around text
btnHigh = maxsize(2);

btnWide = maxsize(1);
%--

% Retrieve screen dimensions (in correct units)

%--
screensize = get(0,'ScreenSize'); % record screensize
%--

% How many rows and columns of buttons will fit in the screen?

% Note: vertical space for buttons is the critical dimension

% --window can't be moved up, but can be moved side-to-side

%--
openSpace = screensize(4) - winTopGap - 2*uiBorder - textHigh;

numRows = min(floor(openSpace/(btnHigh + uiGap)), numItems);
if numRows == 0; numRows = 1; end % Trivial case--but very safe to do
numCols = ceil(numItems/numRows);
%--

% Resize figure to place it in top left of screen

%--

% Calculate the window size needed to display all buttons
winHigh = numRows*(btnHigh + uiGap) + textHigh + 2*uiBorder;

winWide = numCols*(btnWide) + (numCols - 1)*uiGap + 2*uiBorder;
% Make sure the text header fits
if winWide < (2*uiBorder + textWide),
 winWide = 2*uiBorder + textWide;
end
% Make sure the dialog name can be shown
if winWide < winWideMin %pixels
 winWide = winWideMin;
end
% Determine final placement coordinates for bottom of figure window
bottom = screensize(4) - (winHigh + winTopGap);
% Set figure window position
set(menuFig, 'Position', [winLeftGap bottom winWide winHigh]);
%--

% Size uicontrols to fit everyone in the window and see all text

%--

% Calculate coordinates of bottom-left corner of all buttons
xPos = (uiBorder + (0:numCols-1)'*(btnWide + uiGap)*ones(1,numRows))';

xPos = xPos(1:numItems); % [all 1st col; all 2nd col; ...; all nth col]
yPos = (uiBorder + (numRows-1:-1:0)'*(btnHigh + uiGap)*ones(1,numCols));

yPos = yPos(1:numItems); % [rows 1:m; rows 1:m; ...; rows 1:m]
% Combine with desired button size to get a cell array of position vectors
allBtn = ones(numItems,1);

uiPosMtx = [xPos(:), yPos(:), btnWide*allBtn, btnHigh*allBtn];

cUIPos = num2cell(uiPosMtx(1:numItems, :), 2);
% adjust all buttons
set(hBtn, {'Position'}, cUIPos);
%--

% Align the Text and Buttons horizontally and distribute them vertically

%--
% Calculate placement position of the Header
textWide = winWide - 2*uiBorder;
% Move Header text into correct position near the top of figure
set(hText, ...
 'Position', [uiBorder winHigh-uiBorder-textHigh textWide textHigh]);
%===

% ACTIVATE

%===

% Make figure visible

%--
set(menuFig, 'Visible', 'on');
%--

% Wait for choice to be made (i.e UserData must be assigned)...

%--
waitfor(menuFig,'userdata')
%--

% Selection has been made or figure has been deleted.

% Assign k and delete the Menu figure if it is still valid.

%--
if ishghandle(menuFig)
 k = get(menuFig,'UserData');
 delete(menuFig)
else
 % The figure was deletd without a selection. Return 0.
 k = 0;
end
%%###

% END : local function local_GUImenu

%%###
function menucallback(btn, evd, index) %#ok
set(gcbf, 'UserData', index);
Bibliography
1. "Biohazard Picture"

< http://creativebits.org/files/B_hazard.gif >

2. "___ Current World Population." World Population by Continents and Countries. N.p., n.d. Web. 24 Apr. 2013. <http://www.nationsonline.org/oneworld/world_population.htm>.

3. "Documentation Center." 3-D Shaded Surface Plot. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/surf.html>.

4. "Documentation Center." Block Program Execution and Wait to Resume. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/uiwait.html>.

5. "Documentation Center." Coloring Mesh and Surface Plots. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/visualize/coloring-mesh-and-surface-plots.html>.

6. "Documentation Center." Create and Open Input Dialog Box. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/inputdlg.html>.

7. "Documentation Center." Create User Interface Control Object. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/uicontrol.html>.

8. "Documentation Center." Define Figure Properties. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/figure_props.html>.

9. "Documentation Center." Describe User Interface Control (uicontrol)properties. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/uicontrol_props.html>.

10. "Documentation Center." Generate Menu of Choices for User Input. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/menu.html?searchHighlight=menu>.

11. "Documentation Center." Set Handle Graphics Object Properties. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/set.html>.

12. "Documentation Center." Wait for Key Press or Mouse-button Click. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/help/matlab/ref/waitforbuttonpress.html>.

13. "How Do I Hide Axes and Ticks in Matlab without Hiding Everything Else." - Stack Overflow. N.p., n.d. Web. 24 Apr. 2013. <http://stackoverflow.com/questions/8320153/how-do-i-hide-axes-and-ticks-in-matlab-without-hiding-everything-else>.

14. "How to Plot Several Curves in MATLAB Using Handles." Real Time. N.p., n.d. Web. 24 Apr. 2013. <http://stackoverflow.com/questions/13069444/how-to-plot-several-curves-in-matlab-using-handles>.

15. "Thread Subject: Control Position of 'menu' Figure, It Defaults to Upper Left Corner." Control Position of 'menu' Figure, It Defaults to ... N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/matlabcentral/newsreader/view_thread/32896>.

16. "Thread Subject: Minimize & Restore Figure Windows?" Minimize & Restore Figure Windows? N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/matlabcentral/newsreader/view_thread/16607>.

17. "Thread Subject: Uicontrol - Slider." Uicontrol. N.p., n.d. Web. 24 Apr. 2013. <http://www.mathworks.com/matlabcentral/newsreader/view_thread/31853>.
